1.1.2 Модификация резиновых смесей для получения сальника реактивной штанги

В настоящее время для изготовления сальников реактивной штанги используется следующий состав резиновой смеси:

Бутадиен – нитрильный каучук – БНКС-28 МН. Вулканизирующая группа: сульфенамид Ц, тиурам Д. Активаторы вулканизации: белила цинковые, кислота стеариновая. Противостарители: диафен ФП. Пластификаторы и мягчители: пластификатор эфир ЛЗ-7, церизин, масло мягчительное. Наполнители: мел природный, углерод технический.

Эта резиновая смесь обладает рядом недостатков: склонность к подвулканизации, среднее значение прочности на разрыв, среднее значение остаточной деформации, и сильное теплообразование при динамических нагрузках, небольшой срок службы и значительное повышение температуры внутри образца при испытаниях на усталостную прочность. Для устранения этих недостатков проводят модификацию резиновых смесей и технологического процесса.

Улучшение свойств резиновой смеси.

Была разработана новая резиновая смесь повышенной прочности и твердости. С сохранением технологических свойств при изготовлении и экструзии и обеспечением монтажных и эксплуатационных свойств сальников.

Поставленная цель была достигнута, в результате замены резиновой смеси бутодиен – нитрильный каучук на комбинацию бутадиен – стирольного каучука с содержанием 23 –24% связанного стирола и бутадиен – стирольного каучука с содержанием 63 – 64% связанного стирола. Также содержит парафинонафтеновое масло – пластификатор и дополнительно – техническую добавку, включающую смесь насыщенных жирных кислот, безводную смесь жирных кислот.

Полученная резиновая смесь имеет лучшие характеристики повышенную прочность и жесткость, хорошую технологичность при изготовлении.

Резинотехнические изделия, изготовленные из данной резиновой смеси, имеют необходимые монтажные и эксплуатационные свойства. [5]

В работе [29] предложен перспективный рецепт резиновой смеси, содержащий СКФ-32, стеарат кальция.

Пластификация бутадиен – нитрильных каучуков.

Требования к эффективности пластификатора для нитрильных каучуков обусловлены, в первую очередь, необходимостью повышения морозостойкости нитрильных резин, что связанно с концентрационной зависимостью температуры стеклования пластифицированного эластомера. Для большей эффективности пластификатора необходимо, чтобы он имел низкую температуру стеклования. Однако эффективность пластификатора связана и с его термодинамической совместимостью с каучуком, так как при ограниченной совместимости полимера и пластификатора температура стеклования обычно снижается только в пределах диапазона концентраций, в котором полимер и пластификатор смешиваются.

Под эффективностью пластификатора можно также понимать степень его воздействия на механические свойства полимеров. При введение пластификатора в состав резин снижаются их модуль и прочность, увеличиваются разрывные деформации. Это часто связанно с температурной стеклования пластификатора.

Анализ литературных данных позволил предположить, что при постоянстве концентрации пластификатора в системе относительному увеличению модуля и прочности пластифицированного эластомера будет способствовать некоторое ухудшение сродства пластификатора к каучуку за счет ввода в «хороший» пластификатор некоторого количества вещества, плохо совмещающегося с данным каучуком.

Другая возможность повышения модуля пластифицированных полярных каучуков предлагается в работе [19]. Она основана на использовании концентрации сетки межцепных лабильных физических связей. Степень снижения плотности такой сетки при пластификации связанна не только с общей концентрацией пластификатора в системе, но и с концентрацией протоноакцепторных групп в молекуле пластификатора. Использование малополярных веществ в составе пластификаторов снижает концентрацию этих групп, разрушающих межцепные связи, что должно повышать относительное значение модуля пластифицированных полярных каучуков при одинаковой доле пластификатора в системе.

Бутадиен-нитрильные каучуки различной микроструктуры.

В настоящее время ассортимент изделий и материалов, при изготовлении которых используют бутадиен-нитрильные каучуки, насчитывает более сотни тысяч наименований. Доля потребления БНК в промышленности составляет около 10% от общего объема потребления всех синтетических каучуков. Это обусловлено комбинацией маслобензостойкости БНК при относительно невысокой стоимости.

В последнее время в отечественной промышленности вместо сульфональных каучуков типа СКН используют парафиновые каучуки типа БНКС; расширяется ассортимент и увеличивается потребление зарубежных марок БНК.

Несмотря на близкую химическую природу каучуков СКН и БНКС между ними имеется ряд различий, вызывающих необходимость корректировки рецептуры и технологических параметров процесса изготовления резин.

При сравнительном анализе микроструктуры бутадиен-нитрильных каучуков было установлено, что во всех каучуках основную долю звеньев бутадиена составляют звенья 1,4 (около 87–91%), причем в основном транс – 1,4 (около 74–80% от общего числа бутадиеновых звеньев.) Относительная доля транс – 1,4 – звеньев бутадиена несколько растет с увеличением содержания нитрильных групп.

Молекулы бутадиен-нитрильных каучуков, содержащие 1,4 – цис- и 1,4 – транс-звенья бутадиена, имеют различную подвижность и разный уровень межмолекулярного взаимодействия. Энергия межмолекулярного взаимодействия между нитрильными группами в сополимерах, содержащих 1,4 – транс-звенья бутадиена, выше вследствие более плотной упаковки и меньшей локальной подвижности. [16]

Повышение озоностойкости резин на основе бутадиен-нитрильных каучуков.

Локальное протекание термоокислительных процессов в резинах на основе комбинаций каучуков, прежде всего в межфазных областях, определяет необходимость использования технических приемов защиты резин от старения. Ранее основным способом было перенасыщение одного из каучука противостарителем. Технологические принципы определяющие условия постепенного пополнения противостарителем граничных слоев, могут быть использованы не только для неполярных эластомеров, но и для композиций бутадиен-нитрильных каучуков (БНК) с поливинилхлоридном (ПВХ), причем последнему отводится роль насыщенной противостарителем фазы.

Насыщение осуществляли через стадию образования пластизолей ПВХ с последующей их желатинизацией. Желатинизация и аминирование способствуют уменьшению нерационального расхода противостарителя, вызванного высокой скоростью его диффузии в поверхностные слои изделия с последующим испарением.

При изучении озоностойкости вулканизатов бутадиен-нитрильного каучука используют – ПД-1 (ТУ 38–303–31–98 «ПД-1-полимерная противостарительная паста»). В большей степени положительное влияние ПД-1 оказывает на резины в условиях термоокислительного старения. Так, более выражено пролонгирующее действие ПД-1, чем в случае комбинации диафена ФП и нафтама-2. После старения в течение 72 часов изменение свойств вулканизатов примерно одинаково, затем в интервале от 72 до 240 часов в случае смеси диафена ФП и нафтама-2 отставание от ПД-1 в обеспечении защитных функций увеличивается. [17]

Бутадиеннитрилстиролкарбоксилатный каучук СКНС-26–30–1.

Эпоксидные композиции БНК и СКНС хорошо известны. Благодоря высокой полярности БНК каучук совмещается с компонентами эпоксидной композиции, но именно высокая поляризуемость БНК ухудшает электроизоляционные свойства композиций. Снижение содержания связанного нитрила акриловой кислоты (НАК) в каучуке улучшает диэлектрические свойства композиции. Повысить диэлектрические свойства удалось в результате замены части звеньев связанного бутадиена в карбоксил содержащем БНК на звенья связанного стирола. В качестве оптимального варианта был разработан каучук СКН-26–30–1. Каучук получают методом водно-эмульсионной сополимеризации бутадиена, НАК, стирола и метакриловой кислоты. Каучук имеет высокие диэлектрические свойства: диэлектрическая проницаемость при частоте тока 1000 Гц не более 4,5. Резина на основе каучука СКНС-26–30–1 имеет высокую устойчивость к тепловому старению, более высокую, чем у БНК с близким содержанием НАК, устойчивость к набуханию в органических средах, высокую прочность и сопротивление раздиру. [31]

Нитриласт – новые бутадиен-нитрильные каучуки.

ОАО «Воронежсинтезкаучук» по оригинальной технологии приступило к производству нового бутадиен-нитрильного каучука.

В новом процессе получения композиционно-однородных каучуков Нитриласт в качестве эмульгатора используют соли кислот таллового масла, которые не приводят к загрязнению окружающей среды.

Нитриласты в отличии от СКН содержат органические кислоты и их соли, они способствуют определенному распределению наполнителей и других ингредиентов, а также влияют на технологию переработки резиновых смесей.

При использовании каучуков Нитриласт следует учитывать состав и содержание защитной группы в резиновой смеси: в каучуке содержится значительное количество свободных кислот, которые могут взаимодействовать с аминным стабилизатором. Нитриласт имеют преимущество по сравнению с серийно выпускаемыми каучуками, по прочностным свойствам, морозостойкости, динамической выносливости и др. [28]

Использование смеси диафена ФП и ДФФД.

В производстве резиновых изделий для замедления процесса старения используют аминные стабилизаторы – N-изопропил-N-фенил-n-фенилендиамин (диафен ФП) и N, N '-дифенил – n – фенилендиамин (ДФФД). Однако данные стабилизаторы имеют ряд недостатков, прежде всего пыление компонентов на подготовительных производствах предприятий резиновой промышленности. Потеря массы стабилизаторов при этом достигает 2%. Ежегодные потери компонентов серных вулканизирующих систем и стабилизаторов от пыления на предприятиях резиновой промышленности составляют несколько десятков тысяч в год.

Существенным недостатком диафенаФП является его неравномерное распределение в резиновой смеси. Это приводит к быстрой миграции стабилизатора на поверхность резиновых изделий с последующим выделением в окружающую среду. При использовании смеси диафена ФП и ДФФД характерен синергетический эффект, что повышает устойчивость резин к озонному старению и снижает миграцию диафена ФП на поверхность резинотехнических изделий.

Молекулы диафена ФП могут длительное время находиться в поверхностном слое резин из-за образования связанных водородными связями полимерных форм с молекулами ДФФД, не способных к миграции на поверхность из-за больших размеров. [18]

Влияние структурности высокопористого печного техуглерода на усиление эластомеров.

В серных вулканизатах переходные слои взаимодействуют между собой с образованием углерод-каучуковых цепочечных структур, а в смоляных вулканизатах с наиритом в качестве активатора вулканизации преобладает сегментальное взаимодействие этих слоев со свободным эластомером среды. Однако с увеличением степени наполнения доля последнего уменьшается вплоть до полного исчезновения в результате связывания углеродной поверхностью, а также в результате окклюдированния в межагргатных пустотах при повышении структурности тех углерода, т.е. при переходе от П36Э к П267-Э и далее к наиболее электропроводящему П399-Э.

В случае резин на основе каучука БНКС-28АМН с 2 мас. ч. серы и 1 мас. ч. сульфенамида Ц максимальная прочность достигается при содержании техуглерода П366-Э или П267-Э 40–60 мас. ч. на 100 мас. ч. каучука. При этом в области высоких наполнений наблюдается второе повышение прочности при снижении относительного удлинения до уровня, характерного для пластмасс (40–80%), что свидетельствует о переходе всего каучука в связанное и окклюдированное состояние. Уникальную способность резин с П399-Э сохранять высокую прочность в широкой области наполнений (от 20 мас. ч. до максимально возможной) можно объяснить значительным снижением доли свободного эластомера, а также соотношения связанного и окклюдированного эластомеров в результате окклюдированния не только в межагрегатных пустотах, но и внутри сферических частиц техуглерода.

Характер влияния структурности высокопористого техуглерода на усиливающий эффект зависит от состава вулканизующей группы. При оптимальной степени наполнения прочность при растяжении серных вулканизатов растет с увеличением степени диспергирования техуглерода, а смоляных – с увеличением количества окклюдированного эластомера со смещением оптимума наполнения в область более высоких значений. В обоих случаях с повышением структурности техуглерода расширяется область оптимального наполнения эластомера. [14]

Новый углеродный наполнитель для технических резин.

В производстве РТИ изучен новый кремнеуглеродистый наполнитель – шунгит, представляющий собой измельченную горную породу типа Ш-Х-К.

Особенности структуры и состава шунгита не позволяют рассматривать его в качестве усиливающего наполнителя. Введение шунгита в состав наполненных техуглеродом резин в отсутствии традиционно применяемых пластифицирующих добавок улучшает перерабатываемость резиновых смесей, повышает их упруго-деформационные и конфекционные свойства. Резиновые смеси наполненные шунгитом характеризуются повышенной скоростью структурирования, что вызывает необходимость корректировки вулканизующей системы в сторону снижения содержания ускорителя вулканизации. Применение нового углеродного наполнителя позволяет снизить каучукосодержание резин при сохранении их качества, что является актуальным в условиях непрерывного роста стоимости полимеров. [27]

Применение полимерной серы находящейся в метастабильном состоянии.

Полимерная сера нашла широкое применение в производстве резинотехнических изделий. Сера принадлежит к веществам, которые в свободном состоянии образуют несколько аллотропных форм с ограниченной термостабильностью. Наиболее распространена полимерная сера или альфа – форма – устойчивые при тобычной температуре прозрачные желтые кристаллы ромбической системы. Ромбическая сера имеет плотность 2070 кг/м3 и температуру плавления 112,8 С; она легко растворяется в сероуглероде и частично в каучуке.

Для введения в резиновые смеси используют серу в тонкодисперсном состоянии.

Молотая сера получается дроблением комовой серы с последующим отвеиванием. Состав и свойства молотой серы не отличаются от состава и свойств комовой серы, из которой она получена.

Однако ее применение в качестве вулканизующего агента вызывает ряд технологических трудностей, связанных с плохой текучестью порошка, повышенным пылеобразованием, способностью накапливать электростатический заряд и неудовлетворительной диспергируемостью в каучуке, что частично устраняется масло наполнением. Повышение технологичности применения полимерной серы, несмотря на тридцатилетнюю практику ее использования, по-прежнему остается актуальной задачей.

Разработан способ получения тонких дисперсий полимерной серы в резиновых смесях, предусматривающий применение вулканизующего агента в метастабильном состоянии. Это особенно актуально при замене компрессионного прессования на литье под давлением. Метастабильное состояние характерно для пересыщенных растворов; полимерная сера после стабилизации и закалки представляет собой пересыщенный раствор в циклооктасере, единственном известном для полимерной серы растворителе.

Известно, что метастабильное состояние термодинамически неустойчиво, но способно достаточно длительно сохраняться во времени. Применительно к полимерной сере это проявляется в том, что она находится в высокоэластическом состоянии в течении 10 суток. Поэтому практически задача тонкого диспергирования значительно упрощается, так как в данном случае речь идет о смешении двух эластомеров. Эксперимент показал, что применение полимерной серы в метастабильном состоянии позволяет получить вулканизаты, не уступающие по физико – механическим характеристикам вулканизатам на основе полимерной серы. При этом исключаются технологические трудности, связанные с эксплуатацией ромбической серы в производстве полимерной серы и с применением вулканизующего агента в порошкообразном виде с высокой степенью помола. [15]

Особенности стабилизации полимерной серы.

Стабилизированная полимерная сера представляет собой не выцветающий агент вулканизации. Ее получают из расплавов циклоокто серы, вводя в них специальные соединения – «стабилизаторы». Эффективный стабилизатор полимерной серы является гексахлор-пара-ксилол (ГХК).

Сера реагирует с ГКХ с образованием производных бензотиофена и хлорсульфанов. Синтез происходит по механизму инициируемой радикальной полимеризации, в качестве инициатора выступают хлорсульфаны.

Схема протекания реакции:

1)         Сера взаимодействует с ГХК с образованием полихлорбензотиафена и хлорсульфанов

2)         CCl xCl являются неустойчивыми соединениями и легко распадаются на радикалы

3)         Образовавшиеся по реакции 1 радикалы в момент выделения инициируют процесс полимеризации серы

4)         Обрыв растущих полимерных цепей.

На каждую молекулу полимерной серы приходится в среднем два атома хлора, которые расположены по ее концам. [21]

Стабилизация полимерной серы бромом.

Полимерная сера является, метастабильным аллотроном серы и для ее стабилизации используют достаточно эффективные стабилизаторы, также как галогены или соединения, являющиеся донорами галогенов. Стабилизирующий агент вводят на различных стадиях процесса получения полимерной серы в расплав во время полимеризации или на стадиях закалки и экстракции растворимой серы. В качестве закалочной серы используют природный минеральный раствор хлорида магния (биофит), который содержит около 0,5% бромида магния. Стабилизация полимерной серы происходит ввиду насыщения электронной плотности концевых групп макромолекул. Закалку расплава проводят при температуре ниже 0 оС. В результате получают полимерную серу с выходом 40–45%. После экстракции растворителем выделяют термостабильный продукт, содержащий более 98% полимерной серы. [23]

Микрокапсулированная сера – заменитель полимерной серы.

Микрокапсулированние ромбической серы позволяет предотвратить выцветание серы на поверхности резиновых заготовок. Микрокапсулированную серу получают путем заключения ромбической серы в полимерную оболочку. Оптимальное содержание полимера в оболочке, обеспечивающее замедление выцветания серы на поверхность резиновых смесей. Испытания показали, что резиновые смеси и вулканизаты, содержащие микрокапсулярную серу, практически не уступают эталону по всему комплексу свойств: конфекционным свойствам, клейкости, физико-механическим показателям. [22]

Композиционные эластомеры.

С целью получения каучуков нового типа применяются как специальные каталитические системы так и непосредственное смешение растворов полимеров с образованием вулканизующих композиций нового состава.

Большой интерес представляет СКД – 16, являющийся смесью эластомеров, полученных в присутствии титанового (СКД-1) и лактаноидного (СКД-6) катализаторов. Вулканизаты на основе СКД-16 обладают более высокими прочностными показателями. Кроме того, СКД-16 характеризуется повышенным содержанием цис – 1,4 – звеньев по сравнению с СКД-1, которое может быть согласованно с каждым конкретным потребителем. Смешение растворов двух цис – 1,4 – полубутадиенов позволяет решить проблемы понижения морозостойкости, высокой пластичности, характерные для СКД-6. [29]

Новые пластификаторы для резин на основе полярных каучуков.

ДАЭНДК – смесь сложных эфиров, полученных переэтерификацией диметиловых эфиров, низших дикарбоновых кислот С4 - С6 (адипиновой, глутаровой, янтарной) со смесью спиртов С1 – С20;

ТХЭФ – трихлорэтилфосфат;

ЭДОС – смесьдиоксановых спиртов и их высококипящих эфиров;

ДБЭА – дибутоксиэтиладипинат;

ПЭФ-1 – смесь монофениловых эфиров полиэтиленгликоля (мол. масса 140–190).

Установлено, что при смешение с каучуками новые продукты не вызывают технологических осложнений, не ухудшают технологичность резиновых смесей при их переработки. Пластификаторы ТХЭФ и ПЭФ-1 в большей мере влияют на кинетику вулканизации, чем другие пластификаторы; эти пластификаторы несколько повышают физико-механические показатели смесей и практически не влияют на изменение свойств вулканизатов под воздействием повышенных температур и агрессивных жидкостей. Морозостойкость вулканизатов, содержащих ДАЭНДК, сохраняется на уровне резин, содержащих ДБС, а для резин, включающих остальные пластификаторы, сохраняется на уровне вулканизатов, содержащих ДБФ, или несколько снижается. Использование ПЭФ-1 уменьшается индукционный период вулканизации резиновых смесей на основе БНК. [30; 32]

Анализ литературных данных показал, что для получения сальников реактивной штанги состав резиновой смеси в настоящее время совершенствуется. Исследования в области улучшения качества резиновой смеси продолжается.

 


Информация о работе «Способы производства и методы модификации резиновой смеси для производства сальника реактивной штанги с целью уменьшения себестоимости и увеличения производительности»
Раздел: Промышленность, производство
Количество знаков с пробелами: 174894
Количество таблиц: 32
Количество изображений: 0

0 комментариев


Наверх