Контрольная работа №1

по металловедению

Тема: Металлы и их сплавы

Вариант№14


Вопросы

 

1.Изложите сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации

2.Вычертите диаграмму состояния железо-карбид железа. Укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения в интервале температур от 1600 до 0 °С для сплава, содержащего 3,7 % С

3.Дайте определение легированным сталям. Опишите влияние легирующих элементов хрома, никеля, кремния, марганца, титана на свойства легированных сталей. Укажите, что называется нержавеющей сталью. Какой элемент и в каком количестве необходимо ввести в сталь, чтобы она стала корозионностойкой

4. Приведите описание литейных сплавов на основе алюминия: их маркировку, состав, литейные и физико-механические свойства, область применения. Рассмотрите особенности изготовления и термической обработки отливок из алюминиевых сплавов

5. Для изготовления деталей выбран сплав АМг3. Укажите состав сплава. Опишите каким способом производится упрочение этого сплава и объясните природу упрочения. Укажите характеристики механических свойств сплава


1.Изложите сущность пластической деформации металлов и влияние на неё химического состава, структуры, температуры нагрева, скорости и степени деформации

ДЕФОРМАЦИЯ (от лат . deformatio - искажение)- изменение взаимного расположения точек твердого тела, при котором меняется расстояние между ними, в результате внешних воздействий или различных физико-механических процессов, возникающих в самом теле (например, изменение объёма кристаллов при изменении температуры). Деформация называется упругой, если она исчезает после удаления воздействия, и пластической, если она полностью не исчезает. Наиболее простые виды деформации - растяжение, сжатие, изгиб, кручение.

С понятием деформации связаны два механических свойства металла :

-          Прочность- сопротивление металла (сплава) деформации и разрушению.

-          Пластичность- способность металла к остаточной деформации (остающейся после удаления деформирующих сил) без разрушения.

При упругой деформации происходит незначительное и полностью устранимое смещение атомов или поворот блоков кристалла. Происходит незначительное изменение межатомных расстояний в кристаллической решётке, что схематически изображено на рисунке 1.б. Если под действием внешних нагрузок нормальные напряжения σ превысят допустимые для данного материала значения, искажения решётки станут необратимыми и произойдёт хрупкое разрушение за счёт разрыва межатомных связей (рис1.в).

Возникающие при деформации напряжения σ зависят от приложенной силы P к некоторой площадке F.

σ = P / F кгс/мм²


Образование внутренних напряжений связано с неоднородным распределением деформации по объёму тела.

Пластическими называют деформации, при которых происходит необратимое смещение атомов в кристаллической решётке под действием предельных значений касательных напряжений τ. Необратимое смещение атомов в решётке происходит за счёт сдвига части атомов при их скольжении по плоскостям сдвига в направлениях наиболее плотной упаковки. Сдвигу атомов по плоскостям скольжения явно способствуют искажения решётки, вызванные дислокациями. Дислокации под действием касательных напряжений легко перемещаются в направлении действия сил, облегчая тем самым пластическое (остаточное) деформирование. При пластическом (остаточном) деформировании после снятия внешней нагрузки в деформируемом теле наблюдается остаточное изменение формы и размеров при сохранении сплошности тела. При дальнейшем развитии пластического деформирования может произойти пластичное (вязкое) разрушение путём сдвига. (рис2.б)

Как было сказано ранее, сдвиг в кристаллической решётке сопровождается скольжением одной части решётки относительно другой в направлении наиболее плотной упаковки атомов. Эти плоскости называются плоскостями скольжения или сдвига и зависят от типа кристаллической решётки. Чем больше элементов сдвига в решётке, тем выше пластичность металла. Заштрихованные плоскости на рис.3 являются плоскостями скольжения. По этим плоскостям смещаются атомы вещества при пластическом деформировании кристалла.

Реальные металлы состоят из большого числа кристаллов и имеют большое число дефектов, которые получаются при кристаллизации из расплава. К линейным дефектам относятся дислокации. Дефекты в металлах снижают его прочность, но например, бездефектное железо невозможно подвергнуть пластическому деформированию, а следовательно затруднена его обработка в холодном состоянии.

На рис.4 а) и б) изображены краевая и винтовая дислокации. В первом случае дислокация представляет собой границу неполной атомной плоскости, во втором дислокация- сдвиг одной части кристалла относительно другой. На рис.4 в) изображены двойники, которые относятся к поверхностным дефектам и представляют собой симметрично переориентированные области кристаллической решётки, которые находятся в зеркальном отражении друг к другу.

Итак: Пластическая деформация в кристаллах может осуществляться скольжением и двойникованием. Скольжение- это смещение частей кристалла друг относительно друга и зависит от вида кристаллической решётки. Чем больше направлений в кристалле вдоль которых происходит скольжение, тем пластичнее металл.

Процесс скольжения не нужно представлять, как одновременное передвижение одной части кристалла относительно другой. Скольжение осуществляется в результате перемещения в кристалле дислокаций т.е перемещение атомов. Дислокации могут двигаться по плоскости скольжения в кристаллической решетке при очень малых напряжениях сдвига. Подтверждением этого служат небольшие напряжения при которых происходит пластическая деформация у монокристаллов чистых металлов. При больших деформациях движение дислокаций вызывает появление или размножение большого количества новых дислокаций в процессе пластической деформации.

Двойникование. Пластическая деформация некоторых металлов, имеющих плотноупакованные решётки, помимо скольжения, может осуществляться двойникованием, которое сводится к переориентировке части кристалла в положение, симметричное по отношению к первой части относительно плоскости, называемой плоскостью двойникования. Двойникование подобно скольжению сопровождается прохождением дислокаций сквозь кристалл.

Пластичность металла очень важное свойство, кот учитывается и при проектировании деталей механизмов и в машине, что особенно важно при изготовлении этих деталей давлением, резанием и т.д. По показаниям пластичности можно дать частичную оценку свойств различных металлов, а также произвести контроль качества их изготовления.

Свойства металлов, влияющих на прочность металла, определяют с помощью испытаний. К статическим относятся испытания на растяжение, сжатие, кручение, изгиб. На рисунке 5 построены две характеристики прочности металлов, подвергнутых растяжению. Верхний график показывает, что хрупкие материалы разрушаются под воздействием силы Р при незначительном удлинении Δl. Тогда как пластичные материалы имеют короткий прямолинейный участок упругой деформации и далее способны растягиваться под действием силы. Разрушаются намного позже.

Для пластичных металлов предел прочности σв. характеризует сопротивление металла значительным пластическим деформациям.

На пластичность материала влияют различные факторы:

1)Чем больше в металле возможных плоскостей и направлений скольжения, тем выше его способность к пластической деформации. Металлы, имеющие кубическую кристаллическую решётку (например, алюминий, медь) обладают высокой пластичностью, так как скольжение в них происходит во многих направлениях. Металлы с гексагональной плотноупакованной структурой(цинк, магний) менее пластичны и поэтому труднее, чем металлы с кубической структурой, поддаются прокатке, штамповке и другим способам деформации.

2)С увеличением плотности дислокаций происходит взаимодействие между ними, что тормозит их перемещение и уменьшает пластичность. В металле, упрочённом деформацией, при нагреве обычно повышается пластичность (напр., у меди, никеля).

3)Перспективными являются волокнистые (композиционные материалы). Высокая прочность и пластичность в них достигается путём армирования мягкой металлической матрицы (медь, алюминий, серебро и т.д.) бездефектными нитевидными кристаллами или волокнами неметаллов (напр., углеродные волокна)

4)Деформация бывает горячая- при температуре выше температуры рекристаллизации. Её в зависимости от состава сплава обычно проводят при Т=0,7-0,75 Т пл. При такой темп снижается сопротивление металла пластической деформации и повышается пластичность.

5)Снижение температуры повышает сопротивление пластической деформации уменьшается пластичность. Поэтому металлы, вязкие при сравнительно высоких температурах, могут при низких температурах разрушаться хрупко.

6)На пластичность влияют различные соединения и примеси. В стали, например, количество цементита прямо пропорционально содержанию углерода и чем его больше, тем больше сопротивление деформации и уменьшение пластичности. Марганец повышает прочность и практически не влияет на пластичность. Сера снижает пластичность( особенно в поперечном направлении вытяжки при прокате и ковке) Фосфор сильно уменьшает пластичность. 7) Скорость и степень деформации зависят от приложенной силы. σ = P / F кгс/мм²

 

2.Вычертите диаграмму состояния железо-карбид железа. Укажите структурные составляющие во всех областях диаграммы, опишите превращения и постройте кривую охлаждения в интервале температур от 1600 до 0 °С для сплава, содержащего 3,7 % С

 

Диаграмма состояния сплава представляет собой графическое изображение состояния сплава при изменении его состава, температуры, давления, концентрации элементов. Она показывает устойчивые состояния сплава, при которых компоненты и фазы обладают минимумом свободной энергии. Эти фазы называются равновесными фазами, вследствие чего и диаграммы называют диаграммами равновесия, то есть равновесные состояния- это устойчивые состояния вещества, обладающие минимумом свободной энергии.

Обычно для построения диаграммы состояния пользуются результатами термического анализа, те строят кривые охлаждения сплава.

Сплав нагревают выше температуры плавления и выше, затем охлаждают до 0. В процессе охлаждения с определёнными промежутками времени фиксируется температура сплава , изменяющаяся вместе с агрегатным состоянием. По полученным данным строим кривую охлаждения в координатах время-температура. Если взять сплавы с различным %-ым содержанием, то диаграмма состояния может быть построена в осях концентрация(х), температура(у)

Диаграмма состояния сплава при его кристаллизации показ изменение его состояния в зависимости от температуры и концентрации при постоянном давлении внешней среды.

Ликвидус (по латыни ликва-жидкий)- линия на графике, кот показывает температуру начала кристаллизации сплава.

Солидус ( солид-твёрдый)—точки графика, определяющие температуру конца кристаллизации.

Рассматривая охлаждение металла, отметим, что железо известно в таких модификациях, отличающихся видом кристаллической решётки:

1539°С- температура плавления чистого железа.

-          При температуре ниже 1539 до 1392°С- α-железо, которое часто обозначают как δ-железо

1392°С-критическая точка превращения δ ↔ γ -железо (γ -железо-решётка гранецентрированный кубическая ГЦК)

-          Ниже 1392 до 910°С устойчивым является γ -железо

910°С-критическая точка превращения γ ↔ α -железо

-          При температуре ниже 910°С- α-железо

Эти данные для удобства запишем в таблицу №1


Таблица1.

1539°С Температура плавления железа
1539-1392°С α-железо, часто обозначают как δ-железо
1392°С критическая точка превращения δ ↔ γ-железо
1392-910°С устойчивым является γ -железо
910°С критическая точка превращения γ ↔ α -железо
ниже 910°С α-железо

В системе Fe-C в процессе охлаждения и кристаллизации различают следующие фазы:

-          Жидкая фаза- однородный жидкий расплав

-          Твёрдые фазы:

А)феррит- твёрдый раствор углерода и других примесей в α-железе. ( α-железо - до 910°С и выше 1392 (δ) ) Низкотемпературный α-феррит имеет растворимость углерода до 0,02% (предельная растворимость 0,02% при температуре727°С) и высокотемпературный δ-феррит с предельной растворимостью углерода 0,1% при 1499°С

Б) аустенит- твёрдый раствор углерода и других примесей в γ -железе (γ -железо от 910 до 1392 °С) При 1147°С аустенит содержит 2,14% С, при 727°С- около 0,8%

В) Цементит- химическое соединение железа с углеродом- карбид железа Fe3C. В цементите содержится 6,67% углерода по его массе. Температура плавления цементита около 1550°С≈1600°С.Цементит первичный Ц1 выделяется из жидкого металлического расплава, цементит вторичный Ц2- из аустенита, цементит третичный Ц3- из феррита.

Б)+В)=Ледебурит-механическая смесь(эвтектика)- аустенита и Ц1

Формируется при температуре 1147°С из жидкого металлического расплава, содержащего более 2,14%С .

При понижении температуры до 727°С формируется окончательная структура ледебурита, состоящая из механической смеси (Ф+Ц2)+Ц1. Перлит- механическая смесь Ф+Ц2 .

1.Для построения диаграммы состояния Fe-Fe3C используем координатную плоскость и оси:

-          ось Х, вдоль которой будем откладывать одновременно 2 параметра: состав сплава по содержанию углерода в % и по содержанию цементита в %

-          ось Y, вдоль которой будем откладывать температуру охлаждения сплава от 1600 до 600 °С

Наносим метки:

-по верхней оси Х- равномерно с шагом1 от 0% до 7%- процентное содержание углерода.

 -по оси Y- равномерно с шагом 100от 600 от 600°С до 1600°С

X 0 0 0 0 0,1 0,16 0,51 0,8 2,14 4,3 6,67
Y 1539 1392 911 727 1499 1499 1499 727 1147 1147 1600
точка А N G Р Н J В S Е С D

Информация о работе «Металлы и их сплавы»
Раздел: Промышленность, производство
Количество знаков с пробелами: 31675
Количество таблиц: 4
Количество изображений: 0

Похожие работы

Скачать
18490
1
0

ых цветных металлов относятся алюминий, титан, магний, медь, свинец, олово. Цветные металлы обладают целым рядом весьма ценных свойств. Например, высокой теплопроводностью (алюминий, медь), очень малой плотностью (алюминий, магний), высокой коррозионной стойкостью (титан, алюминий). По технологии изготовления заготовок и изделий цветные сплавы делятся на деформируемые и литые (иногда спеченые). ...

Скачать
81437
2
1

... нагреве опасность образования трещин отпадает, так как под действием возникающего в самом металле тепла получается более равномерный нагрев. Перед ОМД металлы и сплавы нагревают, чтобы увеличить пластичность и уменьшить сопротивление деформированию. В процессе нагрева на поверхности заготовки образуется окалина, а под ней располагается слой обезуглеродного Ме. Толщина слоя, образующейся окалины ...

Скачать
17982
1
0

... , прямые участки трубопроводов и другие комплектующие изделия и материалы в зону монтажа; знакомят бригады с объектами, проводят инструктаж по технике безопасности. 1.4. Монтаж трубопроводов из цветных металлов и их сплавов. При монтаже трубопроводов из цветных металлов – меди, латуни, алюминия и свинца – соблюдают те же требования, что и для трубопроводов из углеродистой стали. К монтажу ...

Скачать
99247
21
0

... и красивых защитно-декоративных пленок на латунных и стальных поверхностях ювелирных изделий, корпусов наручных часов и других товаров. ЗАКЛЮЧЕНИЕ Представленный реферат посвящен товароведной характеристике цветных металлов и изделий из них. В первом разделе реферата нами изучены подходы к классификации цветных металлов и какие металлы вообще относят к цветным (коротко изложим суть): Медь ...

0 комментариев


Наверх