3.2 Выбор материалов и деталей

Корпус разрабатываемого прибора должен обладать высокой надежностью, иметь малые габариты и вес. Материал, соответствующий данным требованиям - полистирол. Данный материал предназначен для изготовления конструкций средней прочности, к которым предъявляются требования повышенной долговечности при переменных нагрузках..

Для изготовления панели индикации выбираем поликарбонат ПК1 ТУ6-05-1762-81 прозрачный. Данный материал - продукт поликонденсации сложных эфиров угольной кислоты, по прочности, термостойкости и химической стойкости среди других термопластов занимает среднее положение, обладает высокой ударостойкостью, малой текучестью под нагрузкой, стоек к маслам, топливу, воде, растворяется в метиленхлориде, хлороформе, под действием кислот и щелочей не растворяется.

Печатная плата изготавливается из стеклотекстолита марки СФПН 1,5 – 50 ТУ – 6 – 05 – 1776 – 88.

3.3 Расчет компоновочных характеристик

Компоновка - размещение в пространстве или на плоскости различных элементов РЭА - одна из важнейших задач при конструировании. Основная задача, решаемая при компоновке РЭА, - это выбор форм, основных геометрических размеров, ориентировочное определение веса и расположения в пространстве любых элементов или изделий радиоэлектронной аппаратуры.

На практике задача компоновки РЭА чаще всего решается при использовании готовых элементов (радиодеталей) с заданными формами, размерами и весом, которые должны быть расположены в пространстве или на плоскости с учетом электрических, магнитных, тепловых и других видов связей.

Компоновочные характеристики и документы способствуют лучшему взаимопониманию не только всех разработчиков данного изделия, но и заказчиков, которые могут субъективно сравнивать как подобные, так и разные по характеру системы.

Методы компоновки элементов РЭА можно разбить на две группы: аналитические и модельные. К первым относятся численные и номографические, основой которых является представление геометрических параметров и операций с ними в виде чисел. Ко вторым относятся аппликационные, модельные, графические и натурные методы, основой которых является та или иная физическая модель элемента, например в виде геометрически подобного тела или обобщенной геометрической модели.

При аналитическом определении объемов замещающих фигур стремятся свести их количество к минимуму, а размеры брать такими, чтобы сразу можно было получить значения установочного объема Vуст. Значение Vуст и подобных параметров элементов РЭА можно вычислить, пользуясь выражением

, (3.1)

где КП - компоновочный параметр; K - коэффициент пропорциональности; m - количество компоновочных параметров Ni. Для расчета объема, веса и потребляемой мощности выражение (3.1) можно представить так:

, (3.2)

, (3.3)

, (3.4)

. (3.5)

Здесь V - общий объем изделия; Kv - обобщенный коэффициент заполнения объема изделия элементами (иногда используют обобщенный коэффициент увеличения объема Kу, больший единицы, так как Kу = 1/kv);

Voi и Vai - значения установочных объемов однотипных Vo и единичных Va i-х элементов;

G - масса аппарата;

Kg - обобщенный коэффициент объемной массы изделия;

G’- объемная масса аппарата;

Kп - коэффициент, учитывающий потери PПИТ.

Значения kv лежат в пределах от 0,2 до 1, Vуст - от долей см3 до сотен дм3, Kg - от 1,2 до 3, Gi - от долей грамма до нескольких килограмм, G’ - от 0,4 до 1,6 г/см3, Kп - от 1 до 1,2.

Исходными данными для расчета являются:

-     количество элементов в блоке;

-     установочная площадь каждого элемента;

-     установочный объем каждого элемента;

-     установочный вес каждого элемента;

-     активная площадь блока;

-     активный объем блока;

-     физическая площадь блока;

-     физический объем блока;

-     активный вес блока.

Результаты расчета компоновочных характеристик приведены в таблице 3.1.


Таблица 3.1.Результаты расчета компоновочных характеристик.

Тип элемента Количество, шт

Объем, мм3

Площадь, мм2

Масса, г
Конд.0.01 мкФ 2 0.72 0.8 1
0.68 мкФ 1 0.72 0.8 1
0.22 мкФ 1 0.72 0.8 1
0.1 мкФ 1 0.72 0.8 1
0.47 мкФ 1 0.72 0.8 1
100 пФ 1 0.72 0.8 1
ИМС 8 выв. 1 1.0 1.0 3.2
40 выв 1 7.5 7.5 10
Индикатор 1 22.75 22.75 20
Резисторы МЛТ 1 1.3 1.2 0.5
С2–33Н – 0.125 14 0.12 0.37 0.15
СП3 – 19 4 0.72 0.36 0.6
Диоды КД522 2 0.8 0.6 0.16

Транзистоты

КП 103 Е

1 0.12 0.12 0.5
КТ 315 Б 1 0.21 0.21 0.8

Переключатель

МК1 – I

1 0.6 0.76 0.7
МК1 – II 1 0.84 1.18 1

Общий компоновочный объем – 45.9 см3.

Общая компоновочная площадь – 36.7 см2.

Общая компоновочная масса – 50 г.

По результатам расчета можно сделать вывод: полученные данные расчета вполне удовлетворяют требованиям технического задания. Коэффициент использования объема равен 0.07. Высота установки элементов не превышает в среднем 0,014 м.



Информация о работе «Электронный измеритель амплитуды УЗ-вибраций»
Раздел: Информатика, программирование
Количество знаков с пробелами: 87162
Количество таблиц: 14
Количество изображений: 0

Похожие работы

Скачать
27483
3
1

... несколько типовых вариантов установки прожекторов, каждый из которых отличается характером распределения суммарного светового потока от всех прожекторов, т.е. освещенностью на территории вокруг мачты. Влияние вибрации на организм человека, нормирование, измерительные приборы. Средства индивидуальной защиты Вибрация представляет собой процесс распространения механических колебаний в твердом ...

Скачать
145927
16
16

... измерения энергии должна находится в пределах ±(0,1-2,5)%. 4.4 Зависимость погрешности дозирования от состава технических средств комплексов дозирования Поскольку в электротехнические комплексы дозирования помимо рассмотренных выше устройств цифрового дозирования количества электричества и электрической энергии входят также устройства коммутации и датчики тока и напряжения, то необходимо ...

Скачать
157070
33
0

... Аорта 30-60 Большие артерии 20-40 Вены 10-20 Малые артерии, артериолы 1-10 Венулы, малые вены 0.1-1 Капилляры 0.05-0.07 Ограничения, налагаемые на частотный диапазон существующих допплеровских измерителей скорости кровотока, обусловлены, в основном, двумя причинами: сложностью получения приемлемых параметров УЗ преобразователя, выполненного на основе пьезокерамики, для работы на ...

Скачать
75453
9
4

... нельзя проводить отбор отдельных компонентов ИС по допуска, как это имело место в схемах дискретных электорадиоэлементах в ЭВМ третьего поколения. Разработка генератора на цифровых микросхемах. Для проверки и настройки цифровых интегральных микросхемах транзисторно-транзисторной логики (ТТЛ) требуются генераторы прямоугольных импульсов. Ниже описывается генератор импульсов, выполненный всего на ...

0 комментариев


Наверх