2. ОБЗОР ОБЬЕКТОВ ПОДЛЕЖАЩИХ ОБРАБОТКЕ ИНФОРМАЦИОННО-СПРАВОЧНОЙ СИСТЕМЫ

 

2.1 Классификация и обозначения цифровых микросхем

Интегральная микросхема это микроэлектронное изделие, состоящее из активных (транзисторов) и пассивных (диодов, резисторов, конденсаторов) элементов, а также из соединяющих их проводников, которое изготавливается в едином технологическом процессе в объеме полупроводника или на поверхности диэлектрического основания, заключено в корпус и представляет собой неразделимое целое. Иногда ее называют интегральной схема, иногда микросхемой, соответственно, возможны сокращенные обозначения ИМС, ИС, МС.

По технологии изготовления микросхемы делятся на три разновидности: полупроводниковые (самые распространенные), пленочные (почти не выпускаются) и гибридные (выпускают немного и выпуск сокращают).

В полупроводниковых микросхемах все элементы и их соединения изготавливаются в объеме (внутри) и частично на поверхности полупроводника. Иногда полупроводниковую микросхему называют твердотельной схемой, что является буквальным переводом с английского языка (solid state).

В пленочной микросхеме все элементы и их соединения выполнены в виде пленок из проводящих и диэлектрических материалов на диэлектрическом основании. В этих микросхемах нет транзисторов и диодов.

В гибридных микросхемах пассивные элементы и соединительные проводники изготавливают по пленочной технологии, а бескорпусные транзисторы и диоды, изготовленные отдельно по полупроводниковой технологии, соединяют тонкими проводами диаметром 0,04 мм с контактными площадками.

По функциональному назначению микросхемы делятся на две категории:

– аналоговые, обрабатывающие сигналы, изменяющиеся по закону непрерывной функции;

– цифровые, обрабатывающие цифровые сигналы.

Транзисторы, применяющиеся в цифровых микросхемах, бывают двух типов:

– обычные (n–p–n или p–n–p) биполярные транзисторы;

– полевые (униполярные) транзисторы.

В цифровых микросхемах применяются полевые транзисторы только с изолированным затвором, имеющие структуру: металл (затвор), диэлектрик (изоляция затвора), полупроводник (канал, сток–исток), сокращенно МДП, а так как в качестве диэлектрика обычно используется окись кремния, то обычно эти транзисторы, а также микросхемы на них сокращенно называют МОП. Чаще всего в цифровых микросхемах используют пары МОП транзисторов, дополняющие друг друга по проводимости канала, такие микросхемы называют КМОП от слова комплиментарный, что означает дополняющий.

В зависимости от элементов, на которых собраны входные и выходные каскады микросхем, от схемных особенностей этих каскадов цифровые микросхемы делятся на несколько групп или, так называемых "логик" (здесь под словом "логика" подразумевается логический элемент или электронный ключ):

1. РТЛ, – резистивно–транзисторная логика, в которой на входах стоит резистивный сумматор токов, реализующий для положительной логики функцию ИЛИ; выходной каскад собран на транзисторном инверторе;

2. ДТЛ, – диодно–транзисторная логика, в которой на входах стоит несколько диодов, реализующих функцию И или ИЛИ; выходной каскад на транзисторах;

3. ТТЛ, – транзисторно–транзисторная логика, в логических элементах которой ко входам подключены эмиттеры многоэмиттерного транзистора; с помощью этого многоэмиттерного транзистора реализуется функция И; выходной каскад собран на транзисторах;

4. ЭСЛ, – эмиттерно–связанная логика, в которой на входах стоят транзисторы, эмиттеры которых связаны друг с другом;

5. nМОП, pМОП, – МОП логика, все элементы которой выполнены на МОП транзисторах с проводимостью канала n–типа (n–МОП) или p–типа (p–МОП);

6. КМОП, – логика, все элементы которой выполнены на двух типах МОП транзисторов nМОП и pМОП, дополняющих друг друга, т.е. комплиментарных;

7. И2Л, – интегральная инжекционная логика, в которой отсутствуют резисторы; инжекция носителей в область базы транзистора осуществляется с помощью активных генераторов тока, выполненных на p–n–p транзисторах, тогда как сам базовый инвертор, – на n–p–n транзисторах.

По принятой у нас системе обозначение микросхемы должно состоять из четырех основных элементов:

1) цифра, соответствующая конструктивно–технологической группе (1, 5, 6, 7, – полупроводниковые микросхемы, из них 7, – бескорпусные; 2, 4, 8, – гибридные микросхемы; 3, – прочие, в том числе пленочные, вакуумные, керамические и т.д.);

2) две, а в последнее время три цифры, обозначающие порядковый номер разработки серии микросхем;

3) две буквы, обозначающие функциональное назначение микросхемы; первая буква соответствует подгруппе (сейчас девятнадцать подгрупп), вторая, – виду (от трех до семнадцати видов в подгруппе);

4) порядковый номер разработки данной микросхемы внутри своего вида в данной серии.

Номером серии микросхемы считают первые три или четыре цифры. Для микросхем, используемых в устройствах широкого применения, перед номером серии ставится буква К. Для характеристики материала и типа корпуса микросхемы после буквы К могут быть добавлены следующие буквы: Р, – для пластмассового корпуса второго вида, М, – для керамического, металлического и стеклокерамического корпуса второго типа. В конце обозначения микросхемы может быть добавлена буква, конкретизирующая один из основных ее параметров.

Например: КМ155ЛА3, К561ИЕ33, 564ЛА7, КР565РУ8Г.

Корпуса цифровых микросхем бывают в основном двух видов:

1. Планарные (плоские), у этих микросхем условное обозначение корпуса начинается с цифры 4; выводы числом от четырнадцати до сорока двух расположены с двух сторон микросхемы с шагом 1.25 мм, прямые, припаиваются, как правило, к дорожкам печатной платы на стороне установки микросхем; такие корпуса часто называют SOIC (small outline integrated cirquit, – микросхема в малом корпусе с выводами, не лежащими в одну линию). Иногда такой тип корпуса называют сокращенно, – SO.

Рисунок 2.1 - Планарный корпус микросхемы

2. Корпус dip – dual in line package, – в две линии расположенные выводы (иногда этот тип корпуса называют DIL, иногда, чтобы указать, что корпус изготовлен из пластмассы – PDIP, plastic DIP), – корпус микросхемы, у которой обозначение корпуса начинается с цифры 2; выводы числом от четырнадцати до сорока двух с двух сторон микросхемы с шагом обычно 2,5 мм, изогнутые под углом 900 , припаиваются только в отверстиях печатных плат.

Рисунок 2.2 - DIP корпус микросхемы

Отечественные ТТЛ микросхемы в планарных корпусах часто имеют в обозначении серии вторую цифру 3 (133, 136), они обычно выпускаются для специального применения при температуре от – 60 0C до 125 0C, а в dip–корпусах имеют вторую цифру 5 (155,1531), выпускаются для широкого применения при температуре от – 10 0C до 70 0C.

Среди миниатюризированных современных корпусов микросхем, предназначенных для припаивания только на стороне установки микросхем, можно в качестве примера привести следующие:

– SOIC – small outline integrated circuit, при обозначении SN…DW

Рисунок 2.3 - SOIC – small outline integrated circuit, при обозначении SN…DW

В Европе в обозначении ТТЛ микросхем имеются числа 54 для микросхем специального (военного) применения, и 74, – для широкого (гражданского) применения. Буквы в конце зарубежных обозначений означают: L, – низкое потребление мощности, но низкое быстродействие; H, – высокое быстродействие, но и большое потребление мощности; S, – с диодами Шоттки (Sсhottky); A, – улучшенные, перспективные от слова Advance (вольный перевод "аванс"); F, – быстрые от слова Fast – быстрый.

В обозначение зарубежных КМОП (CMOS) микросхем обычно входит число 40 (CD4011B).


Информация о работе «Создание информационно-справочной подсистемы САПР конструкторско-технологического назначения. Интегральные микросхемы»
Раздел: Информатика, программирование
Количество знаков с пробелами: 73505
Количество таблиц: 5
Количество изображений: 17

Похожие работы

Скачать
110708
2
1

... faber) 8. Скиданов В.К.Инновационная деятельность малых предприятий. Перспективы и роль в развитии российской экономики // Актуальные проблемы управления –М., 2004. – Вып. 1. – 232с. 9. Цыганов А.Г.Инновации в малом бизнесе (Институциональный аспект) // Инновационная экономика России. – 2003. – Дек./Февр. – С168. 10. . http://innovbusiness.ru/ 11. http://www.inno.ru/projects/current.php?b& ...

Скачать
369637
0
0

... мероприятия по обеспечению однородности выпускаемой продукции. Все эти мероприятия можно объединить в четыре группы: 1. совершенствование технологии производства; 2. автоматизация производства; 3. технологические (тренировочные) прогоны; 4. статистическое регулирование качества продукции. 2.10. Проектирование технологических процессов с использованием средств ...

Скачать
448518
14
55

... также невысока и обычно составляет около 100 кбайт/с. НКМЛ могут использовать локальные интерфейсы SCSI. Лекция 3. Программное обеспечение ПЭВМ 3.1 Общая характеристика и состав программного обеспечения 3.1.1 Состав и назначение программного обеспечения Процесс взаимодействия человека с компьютером организуется устройством управления в соответствии с той программой, которую пользователь ...

Скачать
119963
12
2

... . Предполагается снижение уровня дефектов, выявленных на этапах сборки, приемки и инспекционного контроля на 25%, уменьшение количества рекламаций на 30%. Для определения экономической эффективности предложенных мероприятий по повышению конкурентоспособности и качества продукции необходимо рассчитать затраты, которые понесет предприятие и результаты, которые будут получены при их реализации. ...

0 комментариев


Наверх