2.2 Состав 3D-модели. Создание 3D-моделей

Трёхмерная модель состоит - вершины, грани, полигоны, текстуры, карты нормалей (Рисунок 1). Вообще, если приходится объяснять в подробностях, что из себя представляет трёхмерная модель, неизбежно придётся забираться в геометрические дебри, - без них никак.

Вершина (ед. Vertex, мн. Vertices) - грубо говоря, это абстрактная геометрическая точка с координатами X, Y и Z. Вершиной она называется, впрочем, потому, что является крайней точкой либо замкнутого полигона (плоского многоугольника), либо объёмной фигуры.

Грань (Edge) - отрезок прямой, соединяющий две вершины. Опять же, в трёхмерной графике это не самостоятельное нечто, а лишь ограничитель для полигонов.

Полигон (poly, polygon) - основная функциональная составляющая: плоская многоугольная фигура (обычно трёхмерные редакторы и другие приложения предпочитают оперировать только треугольниками и четырёхугольниками), из множества которых состоит поверхности трёхмерной фигуры.

Любую даже самую сложную фигуру или поверхность можно представить в виде множества простых фигур: такая идеальная фигура, как шар (точнее, сфера), в компьютерной графике в любом случае представляется в виде множества треугольников и четырёхугольников. Чем их будет больше, тем выше степень приближения, то есть, тем более гладкой, тем более сферической будет поверхность. Но опять-таки, это вопрос степени приближения.


Рисунок 1 - Трёхмерная модель

Текстура - изображение, покрывающее поверхность трёхмерной фигуры, используется для придания трёхмерной фигуре материальной достоверности. О текстурах и материалах подробно речь пойдёт в следующей части.

Нормаль и карта нормалей - нормалью называется вектор, перпендикулярный поверхности в каждой данной её точке. Карта нормалей - это определённого рода текстура, цветовая информация которой (то есть, цвет каждого пикселя) считывается как информация о расположении нормали каждой точке того или иного объекта; с помощью карты нормали можно сформировать иллюзию более сложной поверхности, чем она есть на самом деле.

Это нужно для экономии полигонов. Благодаря картам нормалей низкополигональным моделям можно придать вид очень высокополигональных (естественно, с известной долей приближения, но всё-таки). Ранее эта технология не слишком активно применялась по той причине, что карты нормали были крайне сложны в изготовлении - до появления таких пакетов, как MudBoxи ZBrush (и Blender3D), в которых поддерживается технология «скульптурного» моделирования, изготовить правильную карту нормалей было подчас задачей весьма и весьма нетривиальной.

В 2004 году id Software выпустили Doom III, где Normal Mapping использовался повсеместно, и с тех пор эта технология стала уже некоторым образом «общим местом» (Рисунок 2). Особенно в силу того, что «скульптурное» моделирование значительно облегчает жизнь в плане дизайна.

Рисунок 2 – Normal Mapping

 

2.3 Скульптурное моделирование

Скульптурное моделирование - это имитация ваяния, точнее, лепки из пластилина или глины. Инструментарий, который предоставляют MudBox, ZBrush и Blender, позволяет производить над моделью массу хитроумных манипуляций, в точности так, как если бы она была из глины или какого-то другого подобного материала. В ZBrush даже цвет по умолчанию очень характерный: глинисто-красный (Рисунок 3).

Рисунок 3 – Zbrush


Но это - сотни тысяч, миллионы полигонов. А качественно снятая карта нормалей, как уже сказано выше, позволяет создать иллюзию множества мелких деталей на совсем простой поверхности.

2.4 Создание 3D-модели: придать простому вид сложного

Создадим самое примитивное: кубик (8 вершин, 6 граней, 12 рёбер - базовая структура) (Рисунок 4).

Рисунок 4 - Кубик

Теперь у нас в программе есть режим «лепки». Используем по полной: подвергнем форму кубику ужасным истязаниям (Рисунок 5):

Рисунок 5 - Режим «лепки».

В результате у нас получилось: высокополигональная, детализированная фигура с очень сложной поверхностью, где счёт вершинам и полигонам переваливает за 45 тысяч. А если мы зададим нашему компьютеру задание: «преврати вот эту штуку в плоскую картинку, чтобы мы другу послали ее или напечатали на принтере» – то компьютер будет очень долго думать над этой задачей.

Между тем, с помощью карты нормалей самым простым фигурам можно придавать вид очень сложных. Например, идеально гладкой поверхности придать вид заметной шершавости.

Путём не слишком хитрых (но и не слишком простых) манипуляций получаем пресловутую карту нормалей: в сущности, это не более чем текстура, правда, со своим особым цветовым пространством, где цветовая информация - а именно, комбинация красного (R), зелёного (G) и синего (B) цветов для каждого пикселя – описывает его видимое положение в системе координат X, Y и Z, каждый цвет соответствует одной из осей координат. Вот так выглядит карта нормалей (Рисунок 6):

Рисунок 6 - Карта нормалей

Потому что для её получения потребовалось сделать UV-развёртку, т.е. осуществить развёртку поверхности трёхмерной фигуры на плоскость. Накладываем карту нормалей. (Рисунок 7).

Рисунок 7 - Наложение карты нормалей


Наложение карты нормалей и Voila удалось не полностью, потому что в сложной фигуре были искривлены боковые грани, и существенно. А на простом кубе они остались на месте. Если бы они были скруглены и искажены примерно так же, как у высокополигональной фигуры, карта нормалей смотрелась бы намного более убедительно.

Кроме того: лунки на гранях высокополигональной фигуры слишком глубокие. Карты нормалей хороши для того, чтобы имитировать небольшие шероховатости, а не глубокие рытвины на плоской поверхности. Более того, если поверхность с наложенной картой нормалей оказывается под большим углом к зрителю (как на иллюстрации), обман становится очевиден. Опять-таки: карта нормалей позволяет экономить на полигонах, но лишь до известного предела. Вот так и создается любая 3D модель.

2.5 Трехмерное моделирование

Речь пойдёт о традиционных методах 3D-моделирования, оставляя в стороне пакеты скульптурной трехмерной графики. Наиболее употребительный технический прием – это формирование модели из «примитива», простой геометрической фигуры, плоской или объёмной, которая, путём всевозможных трансформаций приобретает нужные моделлеру очертания.

Иногда 3D модель формируется из нескольких «примитивов», но тут есть свои нюансы: в частности, для текстурирования очень желательно, чтобы у такой модели не было невидимых, «внутренних» граней (или даже их фрагментов), а при стыковке нескольких примитивов подобное – не редкость.

Для борьбы с подобной «напастью» применяются булевы операции (booleans) (Рисунок 8). Если не вдаваться в избыточные подробности, то операция объединения (union) позволяет составить из двух соприкасающихся или пересекающихся объектов один, чья поверхность состоит из суммы поверхностей исходных объектов, за вычетом тех областей, где происходит пересечение.

Что касается деформаций в процессе трехмерного моделирования, то здесь ключевыми можно назвать экструдирование (extrude) отдельных элементов - вершин, рёбер и/или граней. Разделение (subdivide), при котором ребро или грань разбивается на несколько равных частей, и перемещение и вращение отдельных элементов, так что любой кубик можно закрутить в бараний рог, в самом буквальном смысле (Рисунок 9).

Есть и чуть более «экзотические» приёмы, такие, как «разрезание» одной или нескольких граней (или одного или нескольких рёбер) в произвольных местах (Loop Subdivide, Knife Subdivide и т.д., названия могут меняться от пакета к пакету).

Рисунок 8 - Булевы операции

Рисунок 9 – Деформации


Задачу 3D-моделлера можно исчерпывающим образом сформулировать, перефразировав древнее изречение: главное – найти в трехмерном примитиве душу и «убрать всё лишнее».

Форму исходной фигуры, т.е. исходного примитива стоит выбирать, исходя из представлений о конечном облике планируемого 3D творения – это, в общем-то, совершенно очевидные вещи.

Но не на одних только примитивах свет клином сошёлся: помимо них есть смысл использовать при моделировании NURBS и/или кривые и поверхности Безье (Besier Curves, Besier Patches).

«Высшим пилотажем», хотя и не то, чтобы слишком сложно осваиваемым, можно назвать 3D-моделирование с помощью кривых (curves) и направляющих (path) (Рисунок 10).

Рисунок 10 - 3D моделирование с помощью кривых (curves) и направляющих (path)

Показательный пример – это формирование с помощью одной или нескольких кривых контура, вдоль которого потом выстраиваются другие геометрические фигуры. Например, шланг или изогнутый ствол дерева удобнее всего моделировать из множества окружностей, «нанизанных» на направляющую кривую.

Использование кривых и сплайнов позволяет добиться особой гладкости 3D модели, минимизируя заметность полигонов.

Очень полезно также при 3D моделировании использование всевозможных средств дубликации: расхожий пример – формирование винтовой лестницы (Рисунок 11). Вручную её собирать – долго и мучительно. Однако процесс вполне можно автоматизировать – разные 3D-пакеты предоставляют разные средства для этого.

Рисунок 11 - Средство дубликации

В любом случае, чем большим количеством инструментов из числа предоставляемых тем или иным пакетом владеет моделлер, тем проще дается 3D моделирование работать и тем больше времени он сэкономит.

2.6 3D-текстуры

Допустим, у нас созрела некоторая модель – и выглядит она пластмассовой: единый ровный цвет, ровная поверхность. Надо ее раскрасить. Для этого существуют т.н. материалы и текстуры.

Материал – это комбинация физических свойств модели: какой её основной цвет, как она поглощает, преломляет, пропускает, рассеивает или отражает свет, какова фактура поверхности и так далее. Эти параметры регулируются с помощью шейдеров – программ, используемых для определения окончательных параметров объекта или изображения (в том числе произвольной сложности описания поглощения и рассеяния света, отражения и преломления, затенения, смещения поверхности, эффектов пост-обработки и наложения текстур) и самих текстур, – растровых изображений, с помощью которых полигональной поверхности можно придать нужную окраску и/или иллюзию рельефа. В некоторых пакетах с помощью текстур можно воздействовать на карты нормалей и другие характеристики поверхности, связанные с поглощением или отражением света.

Текстурирование – не менее значимый процесс в создании трёхмерной графики, чем непосредственно моделирование, а может быть, и более; и в чём-то он даже более сложен в освоении, нежели работа с полигонами (Рисунок 12).

Подобрать правильную «одёжку» и, самое главное, правильно её расположить на поверхности модели – задача трудоёмкая и каверзная, особенно, если поверхность сложная.

Возьмём два примера. Первый – это текстурирование определённого природного ландшафта. Тут очень уместно вспомнить, как выглядят открытые пространства в таких играх, как World of Warcraft или других фэнтезийных массивно-многопользовательских играх.

На рисунке 12 видно: нерегулярная поверхность, ландшафт с возвышениями и впадинами, имитация грунта – песка, травы, воды, в воздухе вон что-то летает... ну, и так далее. Естественно, тут используется множество текстур достаточно высокого разрешения. Но, естественно, не такого высокого, чтобы покрыть весь ландшафт одним растровым изображением (хотя в id Software разработана технология Megatexture, позволяющая поступать как раз таким образом – одной картинкой накрывать весь огромный ландшафт как стол скатертью).

Рисунок 12 - Текстурирование


По традиции изготавливаются изображения – квадратные или прямоугольные, со сторонами, чьи измерения строго кратны 16 (256х256, 512х512, 2048х2048, 2048х512 и так далее). Чем больше изображения, тем более подробными они будут выглядеть в сцене или в игре, тем больше деталей удастся передать. Но габариты изображения – это ещё и размеры графического файла, и объёмы занимаемой оперативной памяти.В движке Quake III существовало ограничение: 4 мегабайта текстур на всю карту. Что очень и очень немного, особенно по нынешним временам.

Текстуры должны стыковаться друг с другом бесшовно, что требует их особой подготовки. Наиболее простой, но небезотказный способ – это деление исходного изображения, например, фотографии, на четыре равных блока и перекрёстное перемещение этих фрагментов друг относительно друга как на вот этой схеме:

[A]-[B]

[C]-[D]

_____

[D]-[C]

[B]-[A]

После чего надо замазывать (например, с помощью штампа в Photoshop) образовавшиеся внутренние швы. А также маскировать повторяющиеся фрагменты: текстуре (Рисунок 13), изображающей, например, траву или песок, стоит выглядеть насколько возможно реалистично, с одной стороны, и однородно – с другой; при наложении на крупную поверхность повторяющейся текстуры, эффект черепицы (tiling) – явного повторения одних и тех же узоров, увы, неизбежен, но его можно хоть как-то спрятать. Если текстура имеет высокое разрешение, то tiling почти незаметен с близкого расстояния, зато более чем заметен издали.


Рисунок 13 - Текстура

И без особого удовольствия увидим многочисленные «квадратики» на земле – повторяющиеся текстуры. При нахождении вблизи поверхности их почти не заметно.

Способов комбинировать несколько текстур существует множество – например, в трёхмерных редакторах можно назначать разные материалы (и, соответственно, разные текстуры) на разные группы вершин на одной и той же поверхности; можно использовать трафареты (stencil) для того, чтобы указывать, где одна текстура будет полностью или частично прозрачной, а где – нет, и где, соответственно, из-под неё будет выглядывать другая.

Второй пример – это некрупная трёхмерная модель, требующая достаточно сложной, но единой текстуры для всей своей поверхности.

И здесь мы упираемся в UV-развёртку

UV-развёртка – это проекция всей поверхности объёмной фигуры на плоскость для последующего расположения на ней растровых изображений (можно вспомнить старые игры типа Quake I или II и процесс изготовления «скинов» для моделей игроков – это как раз рисование текстур по заданной для каждой модели UV-развёртке). Если совсем «на пальцах», то UV-развёртка – это «разрезание» трёхмерной фигуры по заданным швам, так, чтобы она могла лечь на плоскость с минимальными искажениями пропорций.

Это нужно, чтобы избежать масштабных искажений текстуры – чтобы на разных фрагментах модели одно и то же растровое изображение имело одинаковое разрешение. На практике такого добиться удаётся довольно редко, но нужно добиться хотя бы относительного единообразия.

Первое правило: вся поверхность фигуры должна лечь на плоскость «одним слоем», а то на деле бывает иначе – если швы неправильно выставлены.

Правило второе: развёртка должна быть как можно более непрерывной; просто для того, чтобы художнику проще было ориентироваться по ней. Совсем без «островов» дело вряд ли обойдётся, особенно, если фигура сложная, но и с разбросанными так и сяк маленькими фрагментами радости работать нет никакой.

Правило третье: пропорции развёртки должны соблюдаться. Иначе в одном месте фрагмент текстуры будет иметь одно разрешение, а в другом – другое, и выглядеть это будет ужасающе.

После того, как развёртка готова, её можно экспортировать в любой растровый редактор и использовать в качестве шаблона, поверх которого рисуется текстура со всеми возможными деталями (Рисунок 14).

Далее приведём пример работы с относительно простым объектом:

Рисунок 14 - Развертка

Цельный объект без внутренних граней, без заданного материала и текстур (Рисунок 15).


Рисунок 15 - Объект без внутренних граней, без заданного материала и текстур

Оранжевым цветом обозначены швы (seams), по которым модель будет «разрезаться» для расположения её поверхности на плоскости. По сути дела, UV-развёртка (Рисунок 16) – это примерно то же, что и портновская выкройка или плоская заготовка бумажной модели для склеивания.

Рисунок 16 - UV-развёртка

Модель разрезана; вот как будет выглядеть UV-развёртка (серые линии и красные точки). Сразу поверх неё нарисована текстура. Как видно, «солома» размещена так, чтобы совпадать с ориентацией крыши в пространстве. Без искажений, естественно, не обошлось.

Ну и вот, наконец, вот что получается в итоге:


Рисунок 17 - Отрендеренная модель

Отрендеренная модель (Рисунок 17). Текстура соломы на крыше выглядит так себе, даже, несмотря на хитрость – пакет Blender 3D, в котором данная модель собрана, позволяет регулировать с помощью текстур нормали, добавляя ощущение неровной поверхности. С другой стороны, цели показать супермодель с супертекстурами данный материал и не преследовал. Главное тут – принцип, как это всё делается.

2.7 Риггинг 3D-модели

Риггинг (rigging, animation setup, анимационный сетап). В 3D анимации - это процесс подготовки персонажа к анимации, включающий создание и размещение внутри трёхмерной модели рига (от англ. Rig - оснастка), виртуального «скелета» - набора «костей» или «суставов» (bones, joints), установления иерархической зависимости между ними и значений возможных трансформаций для каждой из этих костей (Рисунок 18).

Рисунок 18 - Персонаж с выстроенным ригом


Скелетная анимация, для которой и применяется риггинг (а с ним и скиннинг) удобна прежде всего тем, что позволяет манипулировать большим количеством составных элементов анимируемой фигуры (конечности, глаза, мышцы лица, губы и т.д.) с помощью относительно малого количества управляющих элементов - тех самых костей и их регулируемых характеристик.

Поскольку между ними устанавливается иерархическая зависимость, то смещение в пространстве каждой кости, находящейся в зависимости от другой, будет представлять собой совокупность её собственных трансформаций и трансформаций, которым подвергается «материнская» кость. Другими словами, за смещением кости бедра должно следовать смещение костей всей ноги. Грамотная настройка зависимостей позволяет аниматорам значительно экономить усилия, указывая, например, траектории смещения только для небольшого количества отдельных костей, которые потянут за собой другие, находящиеся в иерархическом подчинении.

Собственно, структура сочленений виртуального скелета даже внешне очень похожа на сочленения скелета у позвоночных. От сложности этой структуры напрямую зависит, насколько она будет гибкой, и насколько реалистичной получится анимация. С другой стороны, чем больше костей в структуре рига, тем сложнее будет с ним работать. 3D модель с несколькими добавленными «костями» (Рисунок 19). Всё остальное ещё предстоит сделать.

Рисунок 19 - 3D модель с несколькими добавленными «костями»


С риггингом напрямую связан процесс скиннинга (от англ. skin - кожа; интересно, кстати, что в отрыве от контекста 3D графики слово skinning переводится как «свежевание»), - назначения связей между участками поверхности уже самой анимируемой фигуры и костями рига. Иными словами, необходимо, чтобы кость, соответствующая крайней фаланге пальца, влияла только на нужную группу вершин на поверхности анимированную 3D фигуры, и чтобы не получилось, чтобы изменение положения этой фаланги приводило с загибанию всей руки персонажа в рогалик. Хотя, конечно, если именно это вам и нужно...

У этого процесса немало своих нюансов. Например, необходимо точное определение, какая группа вершин (vertices) подвергается воздействию трансформаций отдельных костей, чтобы не зацепить ненароком другие; на какие группы вершин подвергаются воздействиям более чем одной кости и так далее.

Оптимальным вариантом для анимации фигуры «двуногого без перьев» является скелет, упрощённо повторяющий структуру «обычного» человеческого скелета. На него и следует ориентироваться, создавая «кости»; расположение их сочленений должно совпадать с гнущимися участками фигуры (колени, логти и другие суставы).

Рёбра, естественно, ни к чему, каждый позвонок на позвоночнике - тоже, но спина всё-таки должна сохранять какое-то подобие гибкости, так что костей в ней всё равно будет много.

Больше всего «костей», естественно, придётся задавать для рук - а точнее, пальцев. Здесь структура виртуальных костей должна быть в наибольшей степени похожа на структуру костей в реальных руках, просто для того, чтобы пальцы сгибались там и так, как им полагается. Длина их также должна обладать «реалистичными» пропорциями: если взглянем на человеческую руку, то увидим, что фаланги пальцев имеют неодинаковую длину (Рисунок 20).


Рисунок 20 - Модель кисти руки с выстроенным ригом

Далее для костей (отдельных или целых групп, благо в некоторых редакторах предусматриваются специальные управляющие элементы, которые позволяют регулировать характеристики целых групп костей) необходимо задать значения трансформации, в том числе возможных углов поворота и вращения (например, чтобы пальцы не гнулись куда им не положено).

При анимации антропоморфных фигур очень полезно иметь хотя бы примерные познания в анатомии и иметь под рукой фотографии натуральных скелетов, чтобы понимать, в частности, как располагаются кости внутри конечностей и корпуса, так, чтобы позвоночник, например, не оказался ближе к животу, чем к спине; куда могут гнуться конечности, а куда нет, чтобы не происходило каких-нибудь совсем уж противоестественных деформаций.

В свою очередь, если речь идёт о риге для анимации какой-то техники, то нужно представлять себе, как двигаются её составные части, и опять-таки, что с ними может происходить, и чего не может.

Естественно, обзор этот на детальность не претендует: риггинг - это, в сущности, целая отдельная профессиональная область, такая же как текстурирование, например. По риггингу пишутся целые книги и проводятся многодневные обучающие курсы, ибо слишком много тут тонкостей и деталей.


2.8 3D-анимация: как это делается

Определение традиционной рисованной анимации – «технические приёмы получения движущихся изображений, иллюзий движения и/или изменения формы разнообразных объектов живой и не живой природы» – к 3D анимации подходит весьма относительно. Правильнее сказать, что 3D анимация – это автоматизация перемещения и трансформаций 3D модели в пространстве с течением времени.

В основном применяются три способа анимации 3D объектов. Первый и простейший - это перемещение и вращение целого объекта, без изменения его формы. Второй - это динамические деформации (бьющееся сердце - идеальный пример). Третий, самый сложный, и применяемый обыкновенно для анимации персонажей, - это скелетная анимация.

В свою очередь, чаще всего в 3D анимации используются три метода: анимация по ключевым кадрам, анимация по кривым движения, и анимация по траекториям (Path).

Анимация по ключевым кадрам в 3D по своему принципу очень похожа на работу традиционных аниматоров, когда главный художник рисует ключевые позы персонажа, а его подчинённые художники-позировщики заполняют промежуточные кадры, отрисовывая надлежащие трансформации фигуры. Разница в том, что роль позировщика выполняет уже компьютер (а точнее, соответствующие алгоритмы в программе-редакторе). Аниматору достаточно зафиксировать несколько ключевых положений фигуры, интерполяция осуществится автоматически.

Соответственно, процесс выглядит следующим образом: выбираем первый ключевой кадр (А), фиксируем в нём изначальное положение объекта; затем выбираем следующий ключевой кадр (Б), трансформируем объект (перемещаем, вращаем, изменяем размеры), фиксируем. Программа далее рассчитывает промежуточный процесс - траекторию движения и вращения между кадрами А в Б, а также - изменения размеров (но не формы), отображая эти изменения в виде кривых движения (Рисунок 21).

Рисунок 21 - Изменения в виде кривых движения

Кривые движения (Рисунок 22) - это, собственно, представление перемещения или трансформации объекта в виде графиков для каждой из его координат XYZ. Чтобы лучше понять суть этого процесса анимации, придётся вспоминать школьный курс математики. С другой стороны, такие кривые и их редактирование, как правило, чрезвычайно наглядны, и когда понимаешь взаимозависимости, проблем особых уже не возникает.

Рисунок 22 - Кривые движения

Кривые движения (Loc), вращения (Rot) и изменения размеров (Scale), представленные на одном графике. Это всё то, что претерпевает наша фигура. Скриншоты рабочего окна программы Blender 3D.

Кривые очень удобно использовать для точного контроля над каждым параметром; управление ими в современных пакетах реализуется достаточно наглядно, так, чтобы было минимум путаницы. Но без постоянного учёта множества всяких параметров, качественной 3D анимации сделать не получится.

В некоторых пакетах - Blender, например, - функционал ключевых кадров и кривых объединены в одно. В других пакетах помимо кривых отдельно существует ещё и временная таблица, где все изменяемые при анимации параметры представляются как события на временной шкале.

Ну, и наконец, траектории - это, собственно, они и есть: отдельно задаётся путь перемещения объекта (с направлением), определяется его скорость и возможные изменения ориентации объекта в пространстве, каковая регулируется обычно всё теми же вышеупомянутыми кривыми.

Описанные методы и способы как правило используются в комбинациях, особенно, когда речь идёт о более-менее сложной анимации.

Применяются они и при скелетной анимации, но о ней разговор пойдёт в следующей части.

2.9 Скелетная анимация, прямая и инверсная кинематика

Скелетная анимация – это тот самый случай, когда совсем общую теорию объяснить очень просто, а вот добиться реальных результатов, тем более, результатов серьёзных оказывается очень сложно.

Скелетная анимация – это анимирование 3D-фигуры посредством относительно небольшого количества управляющих элементов, и внешне и по принципу работы, напоминающие скелет – или строение марионетки.

Как он «изготавливается», мы рассматривали в статье «Риггинг». От того, насколько разумно и правильно риггинг был выполнен, зависит и результаты первых попыток анимировать что-либо. Если иерархия костей сделана как надо, то и поведение цепочки, равно как и привязанных к ней вершин, будет «жизнеподобным». Ошибки же могут привести к совершенно нелепым последствиям: ноги могут «уехать» за голову, например.

При умелом использовании скелетная анимация позволяет значительнейшим образом экономить на усилиях – естественно, гораздо проще двигать несколько «костей», нежели тягать с места на место группы вершин и полигонов.

Существуют два основных типа планирования движения «скелета» – это прямая кинематика (Forward Kinematics - FK) и инверсная, или обратная кинематика (Inverse Kinematics – IK). Их также выбирают на этапе риггинга, – впрочем, этот процесс от скелетной анимации вообще неотделим.

Создадим отдельно взятую цепочку «костей» (Рисунок 23) – без добавления мяса пока что. Все операции осуществляются в пакете Blender3D, скриншоты, стало быть, тоже оттуда.

Рисунок 23 - Отдельно взятая цепочка «костей»

Видим четыре кости, где первая - «родительская», все последующие – находятся в последовательной иерархической зависимости от предыдущих.

В случае если использовать прямую кинематику, то при попытке сдвинуть какие-либо звенья (кости) ниже уровнем, чем родительская, приведут к тому, что двигаться будут только нижестоящие.

Повернули кость 2, вместе с ней повернулись (но остались на одной прямой) кости 3 и 4 (Рисунок 24).


Рисунок 24 – Поворот «костей»

Это прямая кинематика: перемещение старших по иерархии костей приводят к тому, что перемещаются и младшие.

При использовании обратной кинематики алгоритм получается ровно противоположный (Рисунок 25):

Рисунок 25 - Использовании обратной кинематики

Задав режим автоматического выбора инверсной кинематики (Blender делает вид, что подбирает оптимальный вариант, и иногда вполне успешно), сдвигаем самую младшую в иерархии кость 4; вся цепочка послушно изогнулась.

Звено цепочки, изменение положения которого приводит к изменению положения других звеньев, называется effector (Рисунок 26) (существует диковинный перевод «влиятель»).


Рисунок 26 – Звено effector («влиятель»)

Подвигали кость 3. Звенья 1-2 поменяли своё положение, а 4 – осталось на одной прямой со звеном 3. Кость 3 теперь является effector'ом, и всё, что находится ниже по иерархии, подчиняется алгоритмам прямой кинематики.

Инверсная кинематика применяется главным образом там, где требуется точное расположение конечного звена в нужной точке (например, чтобы при ходьбе ноги персонажа не «проскальзывали» по поверхности или не утопали в полигонах, изображающих твердь земную).

Самое же важное – это грамотная расстановка ограничителей (constraints) для подвижных элементов на этапе риггинга. Конечности модели персонажа должны вести себя «в разумных антропоморфических пределах», например, чтобы колени не прогибались не в ту сторону или пальцы рук не заворачивались за запястье.

Далее начинается процесс автоматизации движений (Рисунок 27) – тут всё делается так же, как и при обычной анимации. Задаются ключевые кадры для отдельных управляющих элементов, и они тащат за собой все остальные. При этом анимационные пакеты вполне могут регистрировать ключевые положения только для индивидуальных костей, для всех звеньев разом или для отдельных их групп. При этом генерируются кривые движения/вращения/масштаба для каждого элемента, участвующего в анимации. Современные пакеты, разумеется, предоставляют в избытке средства, позволяющие экономить на усилиях – например, «глобализовать» управление сразу множеством элементов, группируя их более-менее удобным способом. На скриншоте ниже представлено всё рабочее окно Blender с активированными Action Editor и Timeline Editor.

Рисунок 27 - Процесс автоматизации движений

Тем не менее, сделать качественную анимацию – чудовищно кропотливый процесс, требующий учитывать огромное количество факторов влияния отдельных элементов друг на друга. Как уже сказано в статье про риггинг, при анимации антропо- или зооморфных персонажей следует иметь в виду анатомические особенности их прообразов в реальном мире и соответствующую взаимосвязь элементов.

2.10 Частицы в 3D-графике: Particle Systems

Системы частиц (Рисунок 28) - ещё один инструмент, который облегчает 3D-художникам жизнь (и сильно осложняет её компьютерам).

Рисунок 28 - Системы частиц


В качестве примера можно привести старые компьютерные игры, относящиеся к ранней эпохе 3D: если кто помнит, факельный огонь в Quake и Hexen II (обе игры построены на одном и том же движке) был реализован в качестве вращающихся светящихся многогранников, по форме «напоминающих» пламя. Сейчас, конечно, так никто не делает; для решения задач такого рода применяются частицы (particles).

Пламя в Quake (точнее, мод Dark Places): слева - в виде многогранников, справа - в виде частиц. Particle System – это технология массовой визуализации подобных объектов, в массе своей формирующих более крупномасштабные тела, не имеющие чётких геометрических границ (облака, дым/пар, взрывы, снег, дождь, огонь) и/или сыпучие тела (песок, зерно, пыль, волосы, трава).

То есть всего того, что визуализировать «стандартными методами» – через моделлинг – слишком сложно и просто нерационально: моделировать каждую травинку или каждый волос – лишняя трата времени и сил.

Математически каждая частица представляет собой материальную точку с назначенными атрибутами, как то: скорость, цвет, ориентация в пространстве, угловая скорость, и т. п. В ходе работы программы, моделирующей частицы, каждая частица изменяет своё состояние по определённому, общему для всех частиц системы, закону (физическому).

Например, частица может подвергаться воздействию гравитации, менять размер, цвет, скорость (в том числе под внешним воздействием) и так далее; после проведения всех расчётов, частица визуализируется. Частица может быть визуализирована точкой, треугольником, спрайтом, или даже полноценной трехмерной моделью.

В целом, системы частиц - это достаточно экономный в плане трудозатрат способ реалистичной визуализации физических явлений. При этом единого стандарта реализации системы частиц в мире на данный момент не существует, и едва ли стоит ожидать её скорого появления, учитывая, что на рынке присутствует немало конкурирующих коммерческих пакетов для работы с частицами, и к тому же многие студии, занимающиеся компьютерной анимацией и спецэффектами для кино, пишут ещё и свои собственные решения. Например, на последнем CG Event представители студии A-VFX, рассказывая о мультфильме «Маша и Медведь», неоднократно подчёркивали наличие у них собственной технологии визуализации волос, с помощью которой в мультфильме были выполнены не только сами волосы/мех, но и трава и пр.



Информация о работе «Организация автоматизированного рабочего места 3D-аниматора»
Раздел: Информатика, программирование
Количество знаков с пробелами: 72059
Количество таблиц: 0
Количество изображений: 39

Похожие работы

Скачать
163932
3
4

... нормальной температуры воздуха в помещении независимо от наружной температуры. В настоящее время наиболее часто в гостиничном хозяйстве применяется водяное, паровое и электрическое отопление. Выбор отопления зависит от назначения и архитектурно-строительного решения гостиницы. Самым распространенным является водяное отопление. В гостиницах применяют отопительные системы среднего давления с ...

Скачать
69768
4
2

... собеседования. Оценку, отбор и прием персонала, учет приема, перемещений, поощрений и увольнения персонала, профессиональную ориентацию и организацию рационального использования персонала, управления занятостью, делопроизводственное обеспечение системы управления персоналом. Подсистема трудовых отношений анализирует и регулирует групповые и личностные взаимоотношения, анализирует и регулирует ...

Скачать
83100
0
1

... (САПР) и пр.; -           ПС, используемые в обучении – электронные учебники, тренажеры, тесты и пр.; -           игровые программы; -           программы, созданные пользователем с помощью сред программирования. Еще один класс программного обеспечения – специальное ПО. Основное его отличие от системного ПО в том, что пользователь сам решает, будет ли он использовать эти ПС или нет, а отличие ...

Скачать
205349
5
1

... Знание языков 5.         Творческие данные 6.         Общительность Для анимации туров большое значение имеет использования календаря празников. и знаменательных событий. Лекция 13. Информационные технологии в туристической деятельности   13.1 Автоматизация работы турфирмы В наше время компьютер стал «полноценным рабочим» каждого предприятия. Турфирме сегодня без компьютера не обойтись. ...

0 комментариев


Наверх