1.1.1   Свойства, строение и комплексообразование этилендиаминтетрауксусной кислоты (ЭДТА)

Этилендиаминтетрауксусная кислота (С10Н16О8N2) - четырехосновная аминокарбоксильная кислота. Молекулярный вес 292,35. Белый кристаллический порошок. Хорошо растворим в воде, образует стойкие растворы. Растворимость ЭДТА минимальна при рН 1,6-1,8, при уменьшении концентрации ионов водорода в растворе она растет и проходит через максимум при [H]=2,5 г-ион/л.

Структурная формула ЭДТА и идеализированная октаэдрическая комплекса металл - ЭДТА приведены на рис. 1.

Анион ЭДТА4- содержит 10 активных центров, способных осуществлять координацию лиганда ионами металлов: 2 атома азота и 8 атомов кислорода. В твердой фазе в качестве донорных атомов могут выступать все 10 центров. Однако, геометрия лиганда такова, что с одним атомом металла он может образовывать не более 6 связей: 2 с атомами азота и 4 с атомами кислорода разных ацетатных фрагментов ЭДТА. При этом образуется 5 пятичленных металлоциклов: один этилендиаминный (Е-цикл) и четыре глицинатных (Gly- циклы). Центральный Е-цикл и два Gly-цикла лежат приблизительно в одной плоскости, называемой “экваториальной” плоскостью координационного октаэдра. Эти два Gly-цикла обозначаются как G-циклы. Средние плоскости двух других глицинатных циклов располагаются почти перпендикулярно к экваториальной плоскости и обозначаются как R-циклы [7].

1.2.     Бактериальная деградация ЭДТА

ЭДТА характеризуется очень слабой биологической разрушаемостью.

На рисунке 2 приведена предполагаемая схема деградации ЭДТА, которая была изучена у ЭДТА – разрушающего штамма DSM-9103 [4]. Деградация ЭДТА осуществляется монооксигеназной системой. В бактериальных клетках оксигеназные системы выполняют пластическую функцию, окисляя углеродсодержащие вещества, обеспечивают поступление углерода в клетки.

В. Идеализированная октаэдрическая структура комплекса металл-ЭДТА

Физиологическая роль оксигеназ сводится к конкретной задаче увеличения водорастворимости, полярности окисляемой молекулы [8, 9].

ЭДТА-монооксигеназа состоит из двух субъединиц [10]. Субъединица В является оксидоредуктазой, которая переносит восстановительные эквиваленты от NADH2 на FMN, а субъединица А трансформирует комплекс металл-хелатирующий агент при поглощении молекулярного кислорода, то есть выполняет роль собственно оксигеназы.

В результате двух последовательных отщеплений ацетильных концов образуется N,N1-EDDA. Метаболизм N,N1-EDDA до конца не изучен, предполагается, что он выглядит как показано на рис. 3. То есть молекула N,N1-EDDA теряет еще один ацетильный остаток. О метаболизме EDMA ничего не известно, здесь возможно два варианта: либо отщепляется последняя ацетильная группа и остается этилендиамин, либо происходит разрыв в молекуле этилендиамина с образованием глицина и аминоацетальдегида или аммиака и иминоацетальдегидацетата.

1.2.1. Бактерии, разрушающие ЭДТА

ЭДТА характеризуется высокой устойчивостью; микроорганизмы, способные разрушать это соединение, встречаются в природе очень редко. В настоящее время известно лишь четыре штамма ЭДТА-разрушающих бактерий, выделенные в чистую культуру:

1.         Штамм, относящийся к роду Agrobacterium, способный разрушать комплекс Fe (III)-ЭДТА [11];

2.         Штамм BNC-1, граммотрицательная бактерия, способный деградировать комплексы ЭДТА с Mg2+, Ca2+, Mn2+, Zn2+ [12];

3.         Штамм DSM-9103 граммотрицательная бактерия относится к подклассу α-Proteobacteria [4], способный деградировать комплексы Mg2+-, Ca2+-, Mn2+-ЭДТА и частично хелаты с Co, Cu, Zn, Pb.;

4.         Штамм LPM-410 идентифицирован как Pseudomonas sp. [13].


Характеристика штамма LPM-4

Штамм LPM-4 был выделен в лаборатории физиологии микроорганизмов ИБФМ РАН к.б.н. Чистяковой Т. И. из активного ила Пущинских очистных сооружений методом накопительной культуры [6]. Клетки неподвижны, колонии на твердой питательной среде с ЭДТА через неделю роста 0,1-0,3 см в диаметре, круглые, перламутровые с синеватым блеском. Аэроб, не обладающий запахом.

Клетки штамма имеют палочковидную форму (0,1-0,2×0,5-0,6 мкм). На среде с ЭДТА клетки могут быть одиночными или парными. Это типичная граммотрицательная бактерия (рис. 4), о чем говорит достаточно толстая клеточная стенка с волнистыми краями. Клетка содержит электронно-плотные включения (при потреблении ЭДТА), которые, как показали исследования на других штаммах, содержат Ca2+, Mg2+ и PO43- [4].

Штамм LPM-4 уникален по потребностям в питательных веществах. Установлено, что штамм способен расти только на средах, содержащих ЭДТА, и не растет на средах, содержащих глюкозу, этанол, органические кислоты в качестве единственного источника углерода и энергии и неорганические (сульфат аммония, нитрат калия) или органические (мочевина, пептон, гидролизат казеина, аминопептид, дрожжевой экстракт) источники азота [6].

Данный штамм обладает положительной реакцией на наличие оксидазы и каталазы. Температурный оптимум для роста штамма 32-34˚С. Оптимум рН=7. На жидкой питательной среде с ЭДТА идет защелачивание среды в процессе роста клеток.

Клетки штамма способны разрушать различные комплексы ЭДТА с металлами. Суспензия отмытых клеток штамма разрушала ЭДТА и комплексы Ba2+-, Mg2+-, Ca2+-, Mn2+-ЭДТА с постоянной скоростью в диапозоне от 0,310 до 486 ммоль ЭДТА/(г·ч), удельная скорость разрушения Zn-ЭДТА достигала наибольшего значения (0,137 ммоль ЭДТА/(г·ч)) в течение первых 10 часов инкубации, а затем снижалась [6].

Установлено, что штамм LPM-4 способен совместно метаболизировать ЭДТА и глюкозу. Этот процесс можно назвать кометаболизмом.


Информация о работе «Кометаболизм ЭДТА и глюкозы у бактериального штамма LPM-4»
Раздел: Биология
Количество знаков с пробелами: 73207
Количество таблиц: 22
Количество изображений: 1

0 комментариев


Наверх