6. Размер здания 12×12 м.

Площадь стен:

 

S1=2,8*·12=33,6 м2 - внутренней;

S2=2,8* 12=33,6 м2 - внешний.

1= 3 - 3 +2 - 2

2 = Г-Г + В-В + Б-Б

3 = 1 - 1

4 = А-А

7. Определим коэффициент проёмности.

; А – А ;

Б – Б

В – В

Г – Г

1 – 1

2 – 2

3 – 3

8. Определяем суммарный вес против углов Gα.

1= 627,38; Gα2= 813,05

3= 329,04; Gα4= 361;

9. Определяем коэффициент защищённости укрытия.

Коэффициент защиты Кздля помещений в одноэтажных зданиях определяется по формуле:

Где К1 - коэффициент, учитывающий долю радиации, проникающий через наружные и внутренние стены принимаемый по формуле:

10. Определяем коэффициент, учитывающий долю радиации, проникающей через наружные и внутренние стены.

11. Размер помещения (м×м).6х6

α1= α3 = 90, α2= α4 =90

12. Находим кратность ослабления степени первичного излучения в зависимости от суммарного веса окружающих конструкций по таблице 28.

1 = 627,38= 600 + 27,38 = 65 + (27,38· 0,5) =78,69

600 - 65 ∆1 = 650 - 600=50

650 - 90 ∆2 = 90 - 65=25

∆2/∆1 = 25/50=0,5

Кст1 = 78,69

2 = 813,05 = 800 + 13,05 = 250 + (13,05 · 2,5) = 282,63

800 - 250 ∆1 = 900 - 800 = 100

900 - 500 ∆2 = 500 - 250 = 250

∆2/∆1 = 250/100 = 2,5

Кст2 = 282,63

3 = 329,04 = 300 + 29,04 = 8 + (29,04 · 0,08) = 10,32

300 - 8 ∆1 = 350 - 300 =50

350 - 12 ∆2 = 12 - 8 = 4

∆2/∆1 = 4/50 = 0,08

Кст3 =10,32

4 = 361 = 350 + 11 = 12 + (11 · 0,08) = 12,88

350 - 12 ∆1 = 400 - 350 =50

400 - 16 ∆2 = 16 - 12 = 4

∆2/∆1 = 4/50 = 0,08

Кст4 =12,88

 

13. Определяем коэффициент стены.

Кст - кратность ослабления стенами первичного излучения в зависимости от суммарного веса ограждающих конструкций.

14. Определяем коэффициент перекрытия.

Кпер - кратность ослабления первичного излучения перекрытием.

10 см бетон - 270 кгс/м 2 = 5,1 кгс/м2

 

15. Находим коэффициент V1, зависящий от высоты и ширины помещения, принимается по таблице №29.

V1 = 2,8=2+0,8=0,16+0,8 (-0,07) = 0,104

 

16. Находим коэффициент, учитывающий проникание в помещение вторичного излучения.

К0= 0,15ам = 0,15 · 0,94 = 0,14, , Sок = 34 м2

Sпола = 36 м2, а = 34/36 = 0,94

17. Определяем коэффициент, учитывающий снижение дозы радиации в зданиях, расположенных в районе застройки Км, от экранизирующего действия соседних строений, определяется по таблице №30.

Км = 0, 19=10+9 =0,55+9*0,01 = 0,64

 

18. Определяем коэффициент, зависящий от ширины здания и принимаемый по таблице №29. Кш = 0,24

19. Определяем коэффициент защищённости укрытия.

 

Коэффициент защищённости равен Кз=6,32, это меньше 50, следовательно здание не соответствует нормированным требованиям и не может быть использовано в качестве противорадиационного укрытия.

С целью повышения защитных свойств здания необходимо провести следующие мероприятия 2,56 СНИПА:

1. Укладка мешков с песком у наружных стен здания;

2. Уменьшение площади оконных проёмов;

3. Укладка дополнительного слоя грунта на перекрытие.

2. Дополнительные расчёты коэффициента защищённости противорадиационного укрытия.

Предварительные расчёты таблица №2

Сечение здания

Вес 1 м2 конструкции

Кгс/м2

1 - αт стен

Приве-дённый

вес Gпр кгс/м2

Суммарный вес

против углов Gα,

Кгс/м2

А - А

Г - Г

1 - 1

3 - 3

1575

1575

1575

1575

0,12

0,045

0,14

0,03

0,88

0,955

0,86

0,97

1386

1504

1355

1528

1 = 1709

2 = 1713

3 = 1355

4 = 1386

1. Ширина менее 50 см = 0,5 м.

2. Объём массы песка 2000 - 2200 кгс/м2.

3. Определяем вес 1 м2.

 

2200 · 0,5=1100 кгс/м2.

4. Уменьшаем площадь оконных проёмов на 50%.

5. Определяем суммарный вес против углов Gα.

 

1 = 3 - 3 (кол.5 Т.2) + 2 - 2 (кол.5 Т.1)

2 = Г - Г (кол.5 Т.2) + Б - Б + В - В (кол.5 Т.1)

3 = 1 - 1 (кол.5 Т.2)

4 = А - А (кол.5 Т.2)

1= 1528 +180,88 = 1709;

2= 1504 + 171,36 + 209,44 = 1713;

3= 1355;

4= 1386;

6. Определяем коэффициент, учитывающий долю радиации, проникающей через наружные и внутренние стены.

7. Укладываем слой грунта на перекрытие 20 см = 0,2 м.

8. Объём массы грунта

 

1800 кгс/м2;

1800 · 0,2 = 360 кгс/м2.

Определяем вес 1 м2 перекрытия грунта:

 

360+300=660 кгс/м2,9.

Определяем коэффициент перекрытия.

650 - 50 ∆1 = 700 - 650 = 50

700 - 70 ∆2 = 70 - 50 = 20

∆2/∆1 = 20/50 = 0,4

660 = 650 + 10 = 50 + (10 · 0,4) = 54

Кпер = 54

V1 = 0,104

К0 = 0,15 · а

α = 34/36 = 0,94

S0 = 34 м2

Sп = 36 м2

К0 = 0,15 · 0,94 = 0,14

Км = 0,64

Кш = 0,24

10. Определяем коэффициент стены.

Кст =1355 = 1300 + 55 = 8000 + (55 · 10) = 8550

1300 - 8000 ∆1 = 1500 - 1300 = 200

1500 - 10000 ∆2 = 10000 - 8000 = 2000

∆2/∆1 = 2000/200 = 10

11. Определяем коэффициент защищённости укрытия.

 

Коэффициент защищённости равен Кз=74,4, это больше 50, соответственно здание соответствует нормированным требованиям и может быть использовано в качестве противорадиационного укрытия.

Задача № 6

Оценка возможности использования железобетонного фундамента цеха в качестве заземлителя.

Дано:

а=60м

l =18м

n1=20 Ом*м

n2=16Ом*м

h1=4м

α=3,6

β=0,1

U=380В

Rф. - ?

Решение:

nэ = n1 (1 - 2,7-αh1/√S) + n2 (1 - 2,7-βh1/√S)

nэ= 20 (1 - 2,7-3,6*4/32,9) + 16 (1 - 2,7-0,1*4/32,9) = 18,28 Ом*м

Rф = 0,5 (nэ // √S) = 0,5 * 18,28/32,9 = 0,28 Ом

Вывод: сопротивление растекания тока ж/б фундамента можно использовать в качестве заземлителя.


Задача № 7

Расчет заземляющего устройства в цехах до 1000 В.

Дано:

а=24м

l =18м

р= 100Ом*м

Rз. - ?

Решение:

Rтр. = 0,9 (100/4) = 22,5 Ом

n = Rтр. /r= 22,5/4 = 5,6 (6)

n1 = n/ηтр. = 6/0,78 = 7,7

lп= n1*а =7,7*2 =15,4

lп= 84 + 16 = 100

Rп. = 2,1 (1000/100) = 21Ом

Rз. = Rтр. * Rп. / (ηтр. * Rтр. + ηтр. * Rп. * n1= 22,5 *21/ (0,5*22,5 + 0,78*21*7,7) = 3,4 Ом

Вывод: Rз<4, значит, контур можно использовать в качестве заземлителя.


Литература

1. СНИП Строительные нормы и правила 11 - 11, 77 г, Защитные сооружения гражданской обороны.

2. В.Ю. Микрюков Безопасность жизнедеятельности, высшее образование 2006 г.


Информация о работе «Расчёт противорадиационного укрытия на предприятии АПК»
Раздел: Безопасность жизнедеятельности
Количество знаков с пробелами: 13770
Количество таблиц: 3
Количество изображений: 1

Похожие работы

Скачать
65762
2
0

...  – плотность АХОВ;  – высота столба испарения разлившегося АХОВ.  ч , при  ,  т. На втором этапе расчётов проводится определение глубины, ширины и площади зоны химического заражения. Расчет глубин зон заражения первичным (вторичным) облаком АХОВ при авариях на технологических емкостях, хранилищах и транспорте ведется с помощью таблиц. В таблицах приведены максимальные значения глубин зон ...

0 комментариев


Наверх