6. КОМПОНЕНТЫ ДЫХАТЕЛЬНОЙ ЦЕПИ МИТОХОНДРИЙ И ИХ СООТНОШЕНИЕ В ГОЛОВНОМ МОЗГЕ

Созревание и окончательная дифференцировка головного мозга животных сопровождается значительной интенсификацией окислительных реакций, при этом происходят интенсивные процессы образования митохондрий. Число митохондрий в расчете на клетку у взрослых крыс вдвое больше, чем у новорожденных. Подсчитано, что нейроны мозга взрослых крыс могут воспроизводить до 2000 митохондрий в день в расчете на клетку, что свидетельствует о быстром обновлении этих важных субклеточных структур.

С возрастом меняется не только общее количество митохондрий, но и локализация их в нервных клетках; больше митохондрий сосредоточивается в областях синоптических окончаний. Анализ ультраструктуры митохондрий с помощью электронного микроскопа показывает, что в зрелом мозге присутствует большее число относительно небольших по диаметру, но удлиненных митохондрий, чем в мозге новорожденных животных. Появление таких митохондрий приурочено к развитию дендритных сплетений.

Наряду с увеличением количества митохондрий в головном мозге с возрастом примерно вдвое повышается содержание основных компонентов дыхательной цепи митохондрий: цитохромов и флавопротеидов.

Накопление компонентов дыхательной цепи митохондрий мозга идет неравномерно: показано медленное нарастание уровня цитохромов в первые 15 дней постнатального развития и более интенсивное в интервале между 15-м и 30-м днями; к концу последнего периода содержание основных переносчиков дыхательной цепи митохондрий близко к уровню, характерному для взрослых животных. Именно период 2-й – 4-й недели развития для крыс связан с интенсивной миелинизацией, завершением развития нейронов, появлением электрической активности коры больших полушарий и двигательных реакций при электростимуляции мозга.

Одним из наиболее важных этапов в функционировании дыхательной цепи митохондрий является передача электронов от цитохрома а3 на кислород. Как известно, это наиболее медленная реакция среди окислительно-восстановительных реакций цитохромов. Активность цитохромоксидазы, как и количество компонентов дыхательной цепи, в головном мозге с возрастом увеличивается примерно вдвое. Активность цитохромоксидазы несколько большая в нейроглиальных клетках, чем в нейронах.

Таблица 6. Содержание основных компонентов дыхательной цепи митохондрий в головном мозге взрослых и растущих кроликов

Возраст животных, дни Митохондрии коры больших полушарий Митохондрии ствола мозга
флаво-гтро-теиды цитохромы флаво-про-теиды цитохромы
b а

а3

 

с+с1

b а

аз

1 0,60 0,20 0,21 0,24 0,07 1,23 0,42 0,41 0,49 0,13 15 0,76 0,20 0,22 0,4:1 0,06 0,85 0,48 0,31 0,54 0,09 30 1,47 0,45 0,45 0,51 0,15 2,64 0,72 0,67 0,99 0,27 Половозрелые 1,81 0,67 0,64 0,78 0,20 2,48 0,90 0,90 1,23 0,27

Последовательность компонентов дыхательной цепи митохондрий и характер их взаимодействия в митохондриях мозга не отличаются от такового в митохондриях любой другой ткани. Как известно, скорость окислительно-восстановительных превращений компонентов дыхательной цепи значительно превышает скорость реакций дегидрирования субстратов, поэтому именно дегидрогеназные реакции определяют в конечном счете интенсивность окисления энергетических субстратов тканью. Этим же объясняется и значение для интенсивности окислительных процессов в ткани отношения активности дегидрогеназ к содержанию основных компонентов дыхательной цепи. Установлено, что в тканях с высокой скоростью окисления соотношение активности ферментов, лимитирующих ЦТК, к содержанию цитохромов а+а3 или цитохрома с обычно превышает такое соотношение для тканей с более низкой интенсивностью окислительных процессов.

Следовательно, существование подобного соотношения в митохондриях головного мозга можно рассматривать как структурную основу, обеспечивающую высокую интенсивность окислительного и энергетического обмена.


7. ФОНД МАКРОЭРГИЧЕСКИХ СОЕДИНЕНИЙ В МОЗГЕ; ИНТЕНСИВНОСТЬ ИХ ОБРАЗОВАНИЯ И ИСПОЛЬЗОВАНИЯ

Высокая скорость потребления головным мозгом глюкозы и кислорода сопряжена с интенсивным образованием макроэргических соединений. Среди богатых энергией соединений в мозге основная доля принадлежит компонентам адениннуклеотидной системы и креатинфосфату, в то время как трифосфаты гуанина, цитозина, уридина и других составляют менее 10% от суммы макроэргов. Средние данные по содержанию в головном мозге компонентов адениннуклеотидного пула, а также системы креатин-креатинфосфат представлены в табл. 7.

В целом соотношение адениновых нуклеотидов в тканях мозга и печени примерно одинаково', основной составляющей адениннуклеотидного пула является в обоих тканях АТФ. Однако уровень АДФ и особенно АМФ в мозге значительно ниже, чем в печени. Распределение основных макроэргических соединений примерно одинаково во всех отделах мозга.

Особого внимания заслуживают накопленные в последние десятилетия данные о минорном компоненте адениннуклеотидной системы – циклическом 3\5'-АМФ. Установлено, что содержание этого биологически важного соединения в головном мозге значительно выше, чем во многих других тканях, уровень цАМФ в мозге составляет в среднем 1–2 нмоль/г, а цГМФ – до 0,2 нмоль/г. Для мозга характерна также и высокая активность ферментов метаболизма циклических нуклеотидов. Очень высокая активность аденилатциклазы и гуанилатциклазы в синаптосомальных мембранах указывает на специфическую роль циклических нуклеотидов в мозге – они участвуют в синоптической передаче.

Важную роль в энергетическом метаболизме мозга играет система креатин-креатинфосфат. Высокое содержание креатина и его фосфорилированного производного, более чем в 2 раза превышающее сумму адениновых нуклеотидов, а также значительная активность креатинкнназы позволяют рассматривать креатин-креатинфосфат как мощную систему стабилизации уровня макроэргичеасих компонентов адениннуклеотидного пула.

В головном мозге до 25–30% активности креатинкиназы связано с митохондриями. Фермент локализован на внешней митохондриальной мембране. Равновесие катализируемой им реакции сдвинуто в сторону образования креатинфосфата в отличие от цитоПлазматической реакции. Вместе с АТФ-АДФ-транс-локазой, находящейся на внутренней мембране. митохондрий, креатинкиназа принимает участие в трансформациях макроэр-гических соединений, а также в переносе их из одного клеточного компартмента в другой.

Таблица 7. Содержание некоторых нуклеотидов, креатина и кратинфосфата в головном мозге и печени крыс, мкмоль/г

Головной мозг
Соединение средние данные кора больших полушарий мозжечок Печень
АТФ 2,30–2,90 2,08 2,60 2,40–2,80
АДФ 0,30–0,50 0,12 0,16 0,80–1,00
АМФ 0,03–0,05 0,02 0,04 0,15–0,30
Значение «энергетического заряда» 0,850–0,930 - - 0,810–0,870
ГТФ 0,20–0,30 0,29 0,39 0,19–0,26
ГДФ 0,15–0,20 0,10 0,07 0,18–0,25
УТФ 0,17–0,25 0,22 0,19 0,19–0,25
Креатин 5,50–5,95 5,68 5,47 Следы
Креатинфосфат 3,50–4,75 3,90 4,21 Следы


Информация о работе «Энергетический обмен головного мозга»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 82929
Количество таблиц: 10
Количество изображений: 6

Похожие работы

Скачать
7286
0
0

... и постоянным для каждого индивидуума.   Кровоснабжение головного мозга   В норме кровоснабжение головного мозга осуществляется двумя парами - сонных и позвоночных, которые широко анастомозируют между собой концевыми ветвями, образуя на основании мозга Велизиев круг. Клинические проявления недостаточности мозгового кровообращения можно понять через сопоставление величины кровоснабжения мозга и ...

Скачать
15914
0
0

... снижение уровня неметаболического излишка СО2 и ЧСС. Итак, применение нетрадиционных природных биологически активных веществ является одним из эффективных методов дифференциро ванного повышения энергетических потенций организма спортсменов. При использовании растительных пищевых добавок в практике спорта могут быть рекомендованы следующие показания и схемы их приема: - курсовой прием продуктов ...

Скачать
41480
0
0

... нервные «приборы», посредством которых человек осуществляет анализ раздражений. Любой анализатор состоит из трех основных частей: рецептора, проводящих нервных путей и центра в коре больших полушарий головного мозга. Основной функцией рецептора является превращение энергии действующего раздражителя в нервный процесс. Вход рецептора приспособлен к приему сигналов определенной модальности (вида) – ...

Скачать
63690
0
0

... в понимание таких проблем, как соотношение духа и материи, объект-субъектный дуализм, объективность знания, редукционизм и другие. Те проблемы философско-методологическо-го характера, которые ставятся и обретают свое решение в контексте нейробиологической конструктивистской эпистемологии, Рот формулирует в виде парадоксов. Ниже приведены основные из них. ''Первый касается недостающего мира и ...

0 комментариев


Наверх