8. Профилактика

При выявлении в семье больного прогрессирующей мышечной дистрофии рекомендуется обращение в медико-генетическую консультацию.

Большую роль играет профилактика [Лобзин В.С.и др.,2002]:

соблюдение рационального режима дня;

ограничение (лучше исключение) провоцирующих факторов, а также физических перенапряжений;

проведение щадящих реабилитационных мероприятий (занятие ЛФК, спортом необходимо, однако нагрузки не должны быть чрезмерными, необходима их индивидуальная дозированность, регулярность).

Рекомендуется избегать пищевых продуктов, богатых солями калия (картофеля, изюма и др.), питание больной должно быть рациональным, богатым витаминами, клетчаткой.

Не рекомендуется купаться в холодной воде, есть мороженое и пить холодные напитки.

Важен рациональный выбор профессии (исключение работ, связанных с профессиональной вредностью, переохлаждением, значительными физическими нагрузками, необходимостью быстрой смены позы, работы с заданным ритмом (например, на конвейере).

Рациональное питание

Для нормального усвоения пищи и жизнедеятельности организма больных прогрессирующей мышечной дистрофией необходимо его снабжение всеми пищевыми веществами в определенных соотношениях. Данная категория больных нуждается в специальных диетах, в которых особое внимание должно уделяться консистенции и температуре подаваемых блюд, так как у больных прогрессирующей мышечной дистрофией нарушена функция глотания и затруднено продвижение пищи в желудок, следовательно, пищу необходимо подавать небольшими порциями и средней густоты [Под ред. В.Т. Лапшиной.,2002].

Предпочтение следует отдавать:

— супам-пюре (продукты, используемые для приготовления супов-пюре, после их варки, припускания или тушения протирают сквозь сито, многократно пропускают через мясорубку или измельчают с помощью миксера) из овощей (моркови, шпината, капусты брокколи), птицы (курицы) и рыбы (макрели, лосося, сардины), нерыбных продуктов моря (креветок); чтобы частицы протертых продуктов были равномерно распределены по всей массе и не оседали на дно, рекомендуется добавлять белый соус, приготовленный на отваре овощей);

— блюдам из мяса, рыбы, птицы, приготовленным на пару;

— гарнирам из овощей (моркови, тыквы) в виде пюре;

— блюдам из круп: вязкие каши (рисовая, овсяная);

— блюдам из яиц: яйца всмятку, яичные кашки;

— сладким блюдам: кисели средней густоты (из смородины, облепихи, крыжовника), муссам (из клюквы, ревеня);

— горячим напиткам: зеленый чай [Под ред. Н. А. Шнайдер и др.,2005].

В лечебных учреждениях предпочтение отдают черному чаю, хотя целесообразнее включать в рацион зеленый чай, так как он способствует укреплению кровеносных сосудов, снижает артериальное давление, уровни холестерина и сахара в крови, кроме того, обладает антикариесным, противомикробным и противовирусным действием [Шнайдер Н. А., Шнайдер В. А.,2003].

Зеленый чай. Недавнее исследование на нокаутных мышах показало, что зеленый чай при частом употреблении может иметь терапевтический потенциал для предотвращения гибели (атрофии) миоцитов. Исследователи определили, что потребление, эквивалентное 7 чашкам зеленого чая в день, приводит к уменьшению мышечной слабости в конечностях у лабораторных животных. Окислительный стресс усиливается в мышцах, где экспрессируется аномальный белок дистрофин, поэтому авторы пришли к выводу, что при наследственных заболеваниях, приводящих к синтезу аномального дистрофина или миотонинпротеинкиназы (DMPK) целесообразно употребление зеленого чая как антиоксиданта и ловушки (скавенджера) свободных радикалов, способствующего уменьшению окислительного стресса в скелетной и сердечной мускулатуре. Кроме того, употребление зеленого чая рекомендуется беременным женщинам, страдающим прогрессирующей мышечной дистрофией, как для уменьшения мышечной слабости у самих пациенток, так и для уменьшения степени выраженности дистресс-синдрома и мышечной гипотонии у плода (гипокинезия плода) и новорожденных (синдром вялого ребенка). Несмотря на то что эффективность употребления зеленого чая не исследована у людей, страдающих прогрессирующей мышечной дистрофией, он может быть рекомендован при разработке лечебного питания, поскольку безопасен и не имеет значимых негативных эффектов [Ono S., Takahashi K., Jinnai K. et al.,2003].

Травы. Рекомендуется использовать в виде крутого чая травы, которые настаивают 5–10 мин из листов и цветков и 10–20 мин — из корней, и употреблять 2–4 чашки в день. Можно использовать одну траву или в комплексе несколько трав. При прогрессирующей мышечной дистрофии применяются чаи из следующих трав:

— богатые минералами травы: хвощ полевой (Equisetum arvense L.), крапива двудомная (Urtica dioica), овес посевной (Avena sativa);

— при крампи: цимицифуги корень (Cimicifuga racemosa), калина обыкновенная (Viburnum opulus);

— при миалгии и мышечной слабости: писцидия ярко-красная (Piscidia erythrina), таволга вязолистная (Filipendula ulmaria);

— при кардиальной патологии: боярышник (Crataegus monogyna), розмарин (Rosemarinus officinalis);

— с целью увеличения сопротивления химическим, биологическим и физическим нагрузкам: родиола розовая (Rhodiola rosea) [Griggs R.C., Sansone V., Lifton A., Moxley R.T. III. ,2001].

Маточное молочко. Маточное молочко, или «королевское желе» (Royal Jelly) — естественное вещество, произведенное пчелами для питания пчелиной матки и используемое в качестве пищевой добавки в лечебном питании. Маточное молочко богато витаминами, антиоксидантами, ферментами, гормонами и аминокислотами. Кроме того, оно является естественным антибиотиком и обладает антионкогенным эффектом. Интерес представляет исследование, показавшее целесообразность использования маточного молочка как эффективного средства терапии прогрессирующей мышечной дистрофии и связанных с этим заболеванием поражений мышц скелета и внутренних органов (сердца, желудочно-кишечного тракта, матки и т.п.). Хотя результаты этого исследования нуждаются в уточнении, маточное молочко, являясь веществом натурального происхождения, не имеющим никаких известных серьезных побочных эффектов, может рассматриваться как средство дополнительной терапии из класса витаминов и минералов [Held M., Schneider C., Fleischer K., Jany B.,2001].

Следует помнить, что маточное молочко в нативном состоянии сохраняет биологическую активность лишь несколько дней. Этот срок можно продлить до нескольких месяцев при хранении в герметической упаковке в защищенном от света месте при температуре 0–4 °С. Увеличивает срок хранения лиофилизация, или адсорбция маточного молочка на лактозе. Наиболее эффективным способом является добавление маточного молочка в мед в количестве 0,1–5 % [Aminoff M.J., Beckley D.J., McIlroy M.B. ,2001].

Селен. Селен известен своими антиоксидантными свойствами. Селензависимый фермент глутатион-пероксидаза (GPX) перерабатывает глутатион, уменьшая перекисное окисление липидов посредством каталитической редукции пероксидов, включая свободный пероксид водорода. Селен является кофактором в пределах нескольких метаболических путей, включая GPX-путь, где он присутствует в виде селеноцистеина. Селен метаболизируется в свои биоактивные метаболиты — метилселен и S-метилселеноцистеин, которые, по-видимому, действуют на уровне транскрипционного фактора NFT-[kappa]-B, трансдукции сигналов ключевых пунктов клеточных циклов и запуска апоптоза. Кроме того, селен может занимать важное место как ключевой сигнальный энзим типа тирозинкиназы. Поэтому профилактическая роль селена не ограничена его функцией как антиоксиданта [Шнайдер Н.А., Бахтина Е.А., Макарова Л.Г. и др.,2008].

Дефицит селена играет одну из ключевых ролей при цереброваскулярных заболеваниях и заболеваниях миокарда (в том числе кардиомиопатии) в регионах, где снижено содержание селена в почве и воде. В целом по России, согласно данным эпидемиологических исследований, проведенных в последнее время, более чем у 80 % населения обеспеченность селеном ниже оптимальной [Jiang H., Mankodi A., Swanson M.S. et al. ,2004]. Кроме того, существует взаимообратная связь между уровнем селена в окружающей среде (почве, воде) и возникновением некоторых заболеваний, включая эндемический зоб, синдром внезапной младенческой смерти, рассеянный склероз, некоторые формы кардиомиопатии и шизофрению [Ho T.H., Savkur R.S., Poulos M.G. et al. ,2005].

Форма селена, поступающего с пищей, значительно влияет на всасывание (абсорбцию). L(+)-селенометионин хорошо абсорбируется из желудочно-кишечного тракта и значительно лучше кумулируется в организме по сравнению с неорганическим селеном в форме селенида. L(+)-селенометионин имеет более медленный период полувыведения из организма по сравнению с селенидом. Комплекс селена с метионином обеспечивает более эффективное использование селена [Novelli G., Genarelli M., Menegazzo E. et al. ,2003].

Показано, что концентрация селена в мозге плода снижается к периоду родов и возрастает в постнатальном периоде. Серое вещество головного мозга и гипоталамо-гипофизарная часть мозга имеют наиболее высокое содержание селена [Bassez G., Attarian S., Laforet P. et al. ,2001].

До настоящего времени издано очень мало работ, доступных для анализа, по изучению роли дефицита селена в патогенезе прогрессирующей мышечной дистрофий. При этом заболевании селен может играть роль антиоксиданта, влияющего на уровень свободных радикалов и пероксидов липидов. В некоторых исследованиях показано, что уровень селена в сыворотке крови больных прогрессирующей мышечной дистрофии снижен. В небольших исследованиях показано, что профилактический прием селена с пищей оказывает позитивный эффект на выраженность прогрессирующей мышечной дистрофии. При этом показано уменьшение времени расслабления скелетной мускулатуры на 50 % с незначительным увеличением мышечной силы, но без значимого увеличения объема выполняемой работы [Meola G., Sansone V. ,2000].

Основные традиционные источники селена в питании человека — чеснок, морепродукты, грибы, зерновые, а также мясопродукты. Концентрация селена в них определяется его исходным уровнем в почве и воде, кормах (для продуктов животного происхождения), временем года; она зависит от способа технологической и кулинарной обработки, а также имеет органную и видовую специфичность. Например, морская рыба и другие морепродукты содержат больше этого микроэлемента, чем пресноводная рыба. Содержание селена в мясе и мясопродуктах колеблется от 0,05 до 0,17 мг/кг, в рыбе — от 0,25 до 0,46, в грибах — от 0,55 до 27,9 мг/кг. Селен обнаружен в бразильских орехах, пивных дрожжах, капусте брокколи, буром рисе, красных водорослях, курином мясе, печени, луке, лососе, овощах, зародышах пшеницы и цельных зернах. В той или иной степени накапливать микроэлемент способны около 50 представителей лекарственной флоры, среди которой особое место занимают растения, называемые кумуляторами селена. К пищевым продуктам с особенно низким содержанием селена относят молоко и молочные продукты (от 0,005 до 0,018 мг/кг продукта), крупы, макаронные и кондитерские изделия, овощи и фрукты. В зерновых содержание микроэлемента также не очень велико, но вследствие особенностей характера питания человека их можно считать основными поставщиками селена, особенно если они произрастают на почвах, богатых селеном. Основная форма сeлена в зерне — это Se-Met. По некоторым данным, значительная часть этой аминокислоты сосредоточена в зародыше, поэтому тонкий помол муки с удалением его элементов снижает уровень содержания селена [Шнайдер Н.А., Бахтина Е.А., Макарова Л.Г. и др.,2008].

Перспективными объектами для биотехнологического встраивания селена с целью его дальнейшего использования в пищевых целях являются простейшие грибы, дрожжи и одноклеточные водоросли, в частности спирулина. Обладающая уникальным химическим составом, пищевая микроводоросль спирулина представляет собой очень удобный объект фотобиотехнологии. В Красноярском крае редкостным природным источником спирулины является озеро Плахино (Абанский район). В настоящее время плахинские грязи, богатые спирулиной, используются в лечебных учреждениях г. Красноярска, санаторно-курортном лечении при дерматологической патологии [Шнайдер Н.А., Бахтина Е.А., Макарова Л.Г. и др.,2008].

Одно из важнейших полезных свойств спирулины — антиоксидантное действие, которое может быть существенно усилено путем включения в ее состав биодоступного селена. Другим источником биодоступного селена являются селеносодержащие пищевые дрожжи, крупномасштабное производство которых освоено в настоящее время отечественной промышленностью. Сравнительно низкая себестоимость делает дрожжи очень перспективным и привлекательным пищевым источником органического селена [Day J.W., Ricker K., Jacobsen J.F. et al.,2003].

Витамины. Альфа-токоферол, витамин С, ликопин и бета-каротин значительно улучшают диетическую усвояемость селена, так как имитируют приближающийся к идеалу пищевой комплекс. Жирорастворимые витамины значительно повышают степень абсорбции селена. Так, бета-каротин увеличивает всасываемость селена в тонком кишечнике в 1,8 раза. В настоящее время доказано наличие синергизма в плане биодоступности селена для витамина А, аскорбиновой кислоты, бета-каротина, фосфолипидов и ликопина. Наличие всех компонентов, действующих синергически, позволяет получить максимально возможную биодоступность как для селена, так и для остальных компонентов этого антиоксидантного комплекса. Введение для коррекции селена препарата селенопирана в комплексе с альфа-токоферолом и аскорбиновой кислотой при нагрузке метионином повышает содержание восстановленного глутатиона на 20–70 %, активность антиоксидантных ферментов на 20–50 % и снижает содержание продуктов перекисного окисления липидов на 10–60 % в раннем постнатальном и старческом периоде. Фосфолипиды наряду с жирорастворимыми витаминами комплекса повышают биоусвояемость селена и его транспортную доставку к тканям и органам, богатым липидами (мозг, проводящие нервные пути, спинномозговая жидкость, печень, мембраны клеток) [Bassez G., Attarian S., Laforet P. et al. ,2001; Спиричев В.Б.,2003].

Сбалансированная диета с высоким содержанием свежих овощей, фруктов, растительных масел и продуктов из цельного зерна, действительно, может полностью обеспечить физиологические потребности организма больных прогрессирующей мышечной дистрофией в основных природных антиоксидантах, аскорбиновой кислоте, токоферолах, каротиноидах и многих других минорных компонентах, вносящих свой вклад в систему антиоксидантной защиты. Однако реальный пищевой рацион преобладающего большинства пациентов, не имеющих национальной привычки и возможности употреблять большое количество перечисленных выше продуктов, крайне беден витамином С, каротиноидами и далеко не всегда оптимально обеспечен витамином Е [Fardaei M., Rogers M.T., Thorpe H.M. et al. ,2002].

Поскольку быстро изменить сложившуюся структуру и привычки питания больных прогрессирующей мышечной дистрофией и ликвидировать отрицательные последствия реально существующего, широко распространенного и глубокого дефицита ряда биоантиоксидантов (аскорбиновой кислоты, 3-каротина, селена, а в ряде случаев и витамина Е) невозможно, возникает необходимость кардинальной перестройки рациона в сторону существенного увеличения потребления богатых антиоксидантами продуктов питания [Fardaei M., Rogers M.T., Thorpe H.M. et al. ,2002].

Аминокислоты

Таурин. Таурин необходим для нормального обмена натрия, калия, кальция и магния. Проведены исследования на пациентах с прогрессирующими мышечными дистрофиями и на здоровых людях до и после парентерального введения таурина. Изменения возбудимости m.thenari было связано с уровнем калия и хлоридов в сыворотке крови. Фактическая концентрация электролитов была сопоставлена с ожидаемой, при условии, что вводимые внутривенно электролиты не транспортировались в клетки-мишени. Ожидаемые концентрации были вычислены эмпирически. Мышцы у пациентов с прогрессирующей мышечной дистрофией оказались очень чувствительны к внеклеточному калию в отличие от мышц здоровых людей и были неспособны аккумулировать вызванную калием повышенную возбудимость мышц. Таким образом, таурин способен увеличивать внутриклеточную концентрацию калия и мембранную проводимость. Таурин содержится в ряде пищевых продуктов — яйцах, рыбе, мясе, моллюсках, птице, но не встречается в белках растительного происхождения [Лобзин В.С. и др.,2002].

Кофермент Q10. Кофермент Q10 (CoQ10), или убихинон, — мощный антиокислитель и митохондриальный дыхательный кофактор. Он обладает мембраностабилизирующим эффектом. Митохондрии производят энергию, которая расходуется в процессе жизнедеятельности. Убихинон действует так, чтобы облегчить сложный ряд реакций, которые происходят в пределах митохондрий. Химические реакции, в конечном счете, поставляют энергию, которая может быть сохранена для более позднего использования или израсходована в данный момент. В синтезе кофермента Q10 участвует селен [Folkers K; Simonsen R, 1995; Hund E., Jansen O., Koch M. et al. ,2001].

Учитывая важность всех этих процессов, ученые задались вопросом, может ли дополнительное введение убихинона улучшить состояние больных прогрессирующей мышечной дистрофией, которые страдают от снижения мышечной силы и несовершенного метаболизма энергии в пределах миоцитов. Пациенты с самой большой степенью генетической мутации имеют самые низкие уровни кофермента Q10. Это говорит о том, что дефицит кофермента Q10 действительно связан с несовершенным энергетическим обменом миоцитов при прогрессирующей мышечной дистрофии [Moxley R.T. IIIrd, Udd B., Ricker K. ,2000].

Наибольшее количество кофермента Q10 обнаружено в продуктах питания животного происхождения, таких как мясо, печень, бычье сердце и т.д. Также кофермент содержится в макрели, лососе, сардине, арахисе, шпинате. Поскольку кофермент Q10 является жирорастворимым веществом, его рекомендуют использовать вместе с продуктами, содержащими жир, такими как сыр, масло и др. Лучше всего употреблять с небольшим количеством витамина Е, так как это помогает предохранению кофермента Q10 от разрушения [Лобзин В. С., Сайкова Л. А., Шиман А. Г.,2000].


Список используемой литературы

1.         Бадалян Л. О., Темин П.А., Калинин В.А. и др. Прогрессирующая миодистрофия с контрактурами и злокачественным течением – вариант болезни Эмери-Дрейфуса Журн. невропатологии и психиатрии 90:3, 1990

2.         Бадалян Л.О. Невропатология, М., 2008

3.         Бадалян Л.О., Скворцов И.А. Клиническая электронейромиография, М., 1986

4.         Баранов В.С. Соросовский образовательный журнал, № 3, 1999

5.         Белозеров Ю.М., Никанорова М.Ю., Перминов В.С., Страхова О.С. Прогрессирующая мышечная дистрофия Эмери-Дрейфуса. Журн. Альманах клинической медицины. Актуальные вопросы практической неврологии, № 4, М., 2001.

6.         Вельтищев Ю.Е., Темин П.А. Наследственные болезни нервной системы. — М.: Медицина, 1998.

7.         Гаусманова - Петрусевич И. Мышечные заболевания. Польск. Госуд. Мед. Изд. - Варшава, 2001.

8.         Гехт Б.М. и Ильина Н.А. Нервно-мышечные болезни, М., 1998.

9.         Гехт Б.М., Касаткина Л.Ф., Самойлов М.И., Санадзе А.Г. Электромиография в диагностике нервно-мышечных заболеваний. - Таганрог: Изд. ТРТУ., 1997.

10.      Горбунова В.Н., Баранов B.C. Введение в молекулярную диагностику и генотерапию наследственных заболеваний. Ст-Петербург 1997.

11.      Горбунова В.Н., Савельева Е.А., Красильников В.В. Молекулярная неврология. — СПб.: Интермедика, 2000. — Ч. 1.

12.      Гринио Л.П. Атлас нервно-мышечных болезней - М.: Издат. дом АНС, 2004.

13.      Гринио Л.П. Дюшенновская миодистрофия. - Н.Новгород: Изд-во НГМА., 1998

14.      Гринио Л.П., Агафонов Б.В. Миопатии. — М.: Медицина, 1997.

15.      Гусев Е.И., Коновалов А.Н., Скворцова В.И., Гехт А.Б. Неврология, 2009.

16.      Гусев Е.И., Никифоров А.С. Общая неврология, 2007

17.      Евграфов О.В., Макаров В.Б. ДНК-диагностика наследственных заболеваний. Итоги науки и техники: Генетика человека 9; 1991.

18.      Евтушенко С.К., Евтушенко И.С., Новые современные технологии в терапии нейромышечных заболеваний, направленные на замедление их прогрессирования. Международный неврологический журнал № 4(26) 2008.

19.      Евтушенко С.К., Садеков И.А. Наследственные заболевания и пороки развития нервной системы в практике невропатолога. — Донецк: Лебедь, 1994.

20.      Зенков Л. Р., Ронкин M. А. Функциональная диагностика нервных болезней. - M., 1991.

21.      Иллариошкин С. Н., Иванова-Смоленская И.А., Маркова Е.Д. ДНК- диагностика и медико-генетическое консультирование в неврологии. М., 2002

22.      Иллариошкин С.Н., Иванова-Смоленская И.А. Молекулярные основы прогрессирующих мышечных дистрофий Журнал неврологии и психиатрии. — 1998. — № 10.

23.      Казаков В.М. Клинико-молекулярно-генетическая классификация мышечных дистрофий (научный обзор с комментариями) Неврол. журнал. — 2001 — № 3.

24.      Карпищенко А.И. Медицинские лабораторные технологии. Ст-Петербург: Интермедика 1999.

25.      Карпович Е.И., Казакова Л.В., Колбасова Л.В. и др. Случай прогрессирующей мышечной дистрофии Эмери—Дрейфуса. Журн неврол психиат 98: 10, 1998.

26.      Крахмалева И.Н., Липатова Н.А., Шишкин С.С. и др. Генетика 1999.

27.      Лечение нервных болезней, под ред. В.К. Видерхольда, пер. с англ., М., 2004

28.      Лобзин В. С., Сайкова Л. А., Шиман А. Г. Нервно-мышечные болезни. — СПб.: Гиппократ, 2000. — С. 138—144.

29.      Лобзин В.С. и др. Восстановительная и корригирующая терапия нервно-мышечных заболеваний, Л., 2002.

30.      Максимова Н. Р. И. А. Николаева М. Н. Коротов Т. Икеучи О. Онодера М. Нишизава С. К. Степанова Х. А. Куртанов А. Л. Сухомясова А. Н. Ноговицына Е. Е. Гуринова В. А. Степанов В. П. Пузырев Клинико-генеалогическая и молекулярно-генетическая характеристика окулофарингеальной дистрофии в республике Саха (Яуктия) журн. Неврологии и психиатрии им. С.С. Корсакова №6, 2008

31.      Мальмберг С.А. и соавт. Конечностно-поясная мышечная дистрофия: случай ранней детской формы у 2 сибсов. Практическая неврология. - М., 2001.

32.      Мальмберг С.А., Петрухин А. С., Широкова В.И. Мышечная дистрофия Эмери—Дрейфуса. Неврол журн, 1, 2000

33.      Новиков П.В., О.В. Евграфов ДНК-диагностика наследственных заболеваний у детей в Российской Федерации: состояние и проблемы Российский вестник перинатологии и педиатрии, N5,1999

34.      Под ред. В.Т. Лапшиной. Сборник рецептур блюд и кулинарных изделий диетического питания / М.: Хлебпродинформ, С. 632.2002.

35.      Под ред. Н. А. Шнайдер и др. Миотония: Руководство для врачей /— М.: НМФ "МБН", 2005.

36.      Руденская Г.Е., Тверская С.М., Чухрова А.Л. и др. Разнообразие болезней, обусловленных мутациями гена LMNA. Мед генетика 2004.

37.      Самуэльс М. Неврология, 1997

38.      Свердлов Е.Д. Молекулярная генетика, микробиология и вирусология, 1997

39.      Спиричев В.Б. Витамины-антиоксиданты в профилактике и лечении сердечно-сосудистых заболеваний. Витамин Е // Вопр.питания. 2003. № 6. С. 45—51.

40.      Страхова О.С., Белозерова Ю.М., Темин П.А. Кардиомиопатия при прогрессирующей мышечной дистрофии Дюшенна, 1999.

41.      Сухомясова А.Л. Аутосомно-доминантная миотоническая дистрофия в Республике Саха (Якутия): Автореф. дис. канд. мед. наук. Томск, 2005.

42.      Тверская С.М., Руденская Г.Е., Чухрова А.Л., Поляков А.В. ДНК-диагностика прогрессирующей мышечной дистрофии Эмери-Дрейфуса. Журн неврол психиат; 103: 6, 2003.

43.      Темин П.А., Белозеров Ю.М., Никанорова М.Ю., Страхова О. С. Прогрессирующая мышечная дистрофия Эмери—Дрейфуса. В кн.: Наследственные болезни нервной системы. Под ред. Ю.Е. Вельтищева, П.А. Темина. М: Медицина 1998.

44.      Тетенев Ф.Ф., Бодрова Т.Н., Емельянова Н.В. Биомеханика дыхания у больных с прогрессирующими мышечными дистрофиями Журн. неврол. и психиатрии.— № 8— 2000.

45.      Умаханова Р. С. С. Жилина Г. Р. Мутовин Клинический полиморфизм прогрессирующей мышечной дистрофии Эрба – Рота. журн. Неврологии и психиатрии им. С.С. Корсакова №9, 2005

46.      Шаховская Н.И. Генетическая гетерогенность миопатии Дюшенна - Беккера и организация медицинской помощи детям с этим заболеванием в Московском регионе: Автореф. дис. канд.мед. наук. М., 2000.

47.      Шишкин С.С. Наследственные нервно-мышечные болезни. М: Изд-во ВИНИТИ, 1997.

48.      Шишкин С.С. Современные представления о механизмах реализации генетической информации и их нарушениях при некоторых видах менделирующих болезней. В сб.: Теоретические и прикладные проблемы медицинской генетики. М: Изд-во МОИП 1998.

49.      Шишкин С.С., Калинин В.Н. Медицинские аспекты биохимической и молекулярной генетики. М: Изд-во ВИНИТИ, 1999.

50.      Шишкин С.С., Ковалев Л.И. Журн невропатол и психиат №3;1998.

51.      Шишкин С.С., Н.И. Шаховская, И.Н. Крахмалева Клинический полиморфизм, генетическая гетерогенность и проблемы патогенеза первичных миопатий Неврология, №2,2002.

52.      Шишкин С.С., Шаховская Н.И., Лунга И.Н. и др. Наследственные нервно-мышечные заболевания, некоторые проблемы оказания помощи больным и отягощенным семьям. В кн.: Многоликость современной генетики человека. Под ред. С.С. Шишкина. М - Уфа: Изд-во Гилем 2000.

53.      Шнайдер Н.А., Бахтина Е.А., Макарова Л.Г. и др. Роль селена в питании больных с дистрофической миотонией // Вестник НГУ. — 2008. — № 1. — С. 91-96.

54.      Шток В.Н. Фармакотерапия в неврологии, 2003

55.      Яхно Н.Н., Штульмен Д.Р., Мельничук П.В. Болезни нервной системы: В 2 т. — М.: Медицина, 2001.

56.      Adzija D. et al - A prospective cardiological study in patients with progressive muscular dystrophy Duchenne type in Belgrade - Acta-Cardiomiologica- 1994.

57.      Ahn A.H., Kunkel L.M. The structural and functional diversity of dystrophin Nature Genet. — 1998.

58.      Aminoff M.J., Beckley D.J., McIlroy M.B. Autonomic function in myotonic dystrophy // Arch. Neurol. — 2001. — Vol. 42. — P. 16.

59.      Backman E., Henriksson K.G. Neuromusc Disorders, 1995.

60.      Bashir R. et al. A gene for autosomal recessive limbgirdle muscular dystrophy maps to chromosome 2. Hum. Molec.Genet. 1994.

61.      Bashir R., Britton S., Strachan T. et al. Nat Genet 20; 1998.

62.      Bassez G., Attarian S., Laforet P. et al. Proximal myotonic myopathy (PROMM): clinical and histology study // Rev. Neurol. — 2001. — Vol. 157. — P. 209-218.

63.      Beauchamp J.R. Morgan J.E., Pagel C.N. et al J. Cell Biol, 1999.

64.      Becher M. W., Morrison L., Davis L.E. et al. Oculopharyngeal Muscular Dystrophy in Hispanic New Mexicans. JAMA 2001.

65.      Bejaoui K., Hirabayashi K., Hentati F. et al. Neurology 1995.

66.      Blumen S.C., Brais B., Korczyn A.D. et al. Homozygotes for oculopharyngeal muscular dystrophy have a severe form of the disease. Ann Neurol 1999.

67.      Bushby K.M.D. et al - The clinical, genetic and dystrophin characteristics of Becker muscular dystrophy - J.Neurol.-1993.

68.      Chenard A.A. et al - Ventricular arrhythmia in Duchenne muscular dystrophy: Prevalence, significance and prognosis – Neuromuscular-disord. – 1993.

69.      Codere F., Brais B., Rouleau G., Lafontaine E. Oculopharyngeal muscualr dystrophy: What's new? Orbit 2001.

70.      Comi G.P. et al – Clinical variability in Becker muscular dystrophy. Genetic, biochemical and immunohistochemical correlates - Brain 1992.

71.      Day J.W., Ricker K., Jacobsen J.F. et al. Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum // Neurol. — 2003.— Vol. 60, № 4.— P. 657-664.

72.      Emery A.E.H. Diagnostic Criteria for Neuromuscular Disorders. European Neuromuscular Centre. The Netherlands 1994.

73.      Fardaei M., Rogers M.T., Thorpe H.M. et al. Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells // Hum. Mol. Genet. — 2002. — Vol. 11. — P. 805-814.

74.      Folkers K; Simonsen R Two successful double-blind trials with coenzyme Q- 10 (vitamin Q-10) on muscular dystrophies and neurogenic atrophies. Biochimica-et- Biophysica-Acta-Molecular-Basis-of-Disease, 1995.

75.      Griggs R.C., Sansone V., Lifton A., Moxley R.T. III. Hypothyroidism unmasking proximal myotonic myopathy (PROMM) // Neurology. — 2001. — Vol. 48. — P. 229.

76.      Gussoni, E, Soneoka, Y., Strickland, C. D et al. Nature, 1999.

77.      Held M., Schneider C., Fleischer K., Jany B. A patient with muscle pain after a journey to the tropics. Myocardial involvement in proximal myotonic myopathy // Dtsch. Med. Wochenschr. — 2001. — Vol. 123. — P. 1201-1206.

78.      Ho T.H., Charlet B.N., Poulos M.G. et al.Muscleblind proteins regulate alternative splicing // EMBO J. — 2004. — Vol.23. — P.3103-3112.

79.      Hoffmann E.P., Kunkel L.M., Angelini C. et al. Neurology 2009.

80.      http:// doctor.ru/medinfo

81.      Hund E., Jansen O., Koch M. et al. Proximal myotonic myopathy with MRI white matter abnormalities of the brain // Neurology. — 2001. — Vol. 48. — P. 33-37.

82.      Ishikawa Y, Bach JR, Sarma RJ et al., Cardiovascular consideration in the management of neuromuscular disease. Seminars in neurology,1995.

83.      Jiang H., Mankodi A., Swanson M.S. et al. Myotonic dystrophy type 1 associated with nuclear foci of mutant RNA, sequestration of muscleblind proteins, and deregulated alternative splicing in neurons // Hum. Mol. Genet. — 2004. — Vol. 13. — P.3079-3088.

84.      Kaplan J.C., Fontaine В. Neuromuscular disorders: gene location. Neuromusc Disord 1999.

85.      Kay M., Liu D, Hoogerbrugge P.M. Proc. Natl. Acad. Sci. USA, 94, 1997.

86.      Khurana T.S., Prendergast R.A., Alameddine H. et al. J Exp Med 1995.

87.      Le-Thiet-Thanh; Nguyen-Thi-Man; Hori-S; Sewry-CA; Dubowitz-V; Morris-GE Characterization of genetic deletions in Becker muscular dystrophy using monoclonal antibodies against a deletion-prone region of dystrophin. Am-J-Med-Genet. 58(2), 1995.

88.      Lim L.E., Duclos P., Broux O. et al. Nat Genet 11;1995.

89.      Liu J., Aoki M., Illa I. et al. Nat Genet 20;1998.

90.      Maeda M; Nakao S; Miyazato H; et al. Cardiac involvement in Becker muscular dystrophy J-am-coll-cardiol. 22/7, 1996.

91.      McKusik V., Amberger J. The morbid anatomy of the human genome chromosomal location causing disease J. Med. Genet. 2003.

92.      McNally E., Passos-Bueno R., Bonnemann C.G. et al. Am J Hum Genet 1996.

93.      Meola G. Clinical and genetic heterogeneity in myotonic dystrophies // Muscle Nerve — 2000. — Vol. 23. — P. 1789-1799.

94.      Minetti C., Sotgia F., Bruno C. et al. Nat Genet 18; 1998.

95.      Mirabella M., Silvester G., Rosa G. et al. GCG genetic expansions in Italian patients with oculopharyngeal muscular dystrophy. Neurology 2000.

96.      Moreira E., Vainzof M., Marie S. et al. Am J Hum Genet 61; 1997.

97.      Moxley R.T. IIIrd, Udd B., Ricker K. Proximal myotonic myopathy (PROMM) and other proximal myotonic syndromes // Neuromuscul. Disord. — 2000. — Vol. 8. — P. 519-520.

98.      Muntoni F., Mateddu A., Marchei F. et al. J Neurol Sci l20; 1993.

99.      Nevo Y., Muntoni F., Sewery C. et al. Neuromusc Disorders 1998.

100.    Nigro V., de Sa Moreira E., Piluso G. et al. Nature Genet 14; 1996.

101.    Novakovic I., Todorovic S., Apostolski S. et al. Neuromusc Disord 1998.

102.    Novelli G., Genarelli M., Menegazzo E. et al. (CTG)n triplet mutation and phenotype manifestations in myotonic dystrophy // Biochem. Med. Metab. Biol. — 2003. — Vol. 50. — P. 85-92.

103.    Ono S., Takahashi K., Jinnai K. et al. Loss of serotonin-containing neurons in the raphe of patientswith myotonic dystrophy: a quantitative immunohistochemical study and relation to hypersomnia // Neurology. — 2003. — Vol. 50. — P. 535-538.

104.    Palmucci L., Doriguzzi C., Mongini T. et al. Neurology 2004.

105.    Partridge T., Lu Q.L., Morris G., Hoffman E Nature Medicine, 4, 1998

106.    Penninger J.M., Neu N., Bachmaier К. The Immunologist 1996.

107.    Piantadosi C., Nigro V., Servider S. et al. Neuromusc Disorders 1998.

108.    Piccolo F., Roberds S.L., Jeanpierre M. et al. Nat Genet 10; 1995.

109.    Porter J.D. Neuromusc Disord 1998.

110.    Quinlivan-RM; Dubowitz-V Cardiac transplantation in Becker muscular dystrophy. Neuromuscul-Disord. 1992.

111.    Rando T.A., Dziesietnik M.H., Dhawan J. et al. Neurology 1997.

112.    Rees W; Schuler S; Hummel M; Hetzer R - Heart transplantation in patients with muscular dystrophy associated with end-stage cardiomyopathy J-heart- lung-transplant. 12/5, 1993.

113.    Richard I., Brenguier L., Dincer P. et al. Am J Hum Genet 60; 1997.

114.    Saito K.et al - Molecular genetic analysis of Duchenne/Becker muscular dystrophy families. In: Сlin-neurol. - 2002.

115.    Sharma K.R., Mynhies M.A., Robert Y., Miller R.Y. Neurology 1993.


Информация о работе «Прогрессирующие мышечные дистрофии»
Раздел: Медицина, здоровье
Количество знаков с пробелами: 150673
Количество таблиц: 3
Количество изображений: 7

Похожие работы

Скачать
59147
2
0

... Hungary. – CD. – A0034. Автор провів аналіз клініко-ортопедичних даних у хворих на ПМД, який було покладено в основу написання тезів. АНОТАЦІЯ   Зима А.М. Діагностика та ортопедичне лікування різних форм прогресуючої м’язової дистрофії. Рукопис. Дисертація на здобуття наукового ступеня кандидата медичних наук за спеціальністю 14.01.21 – травматологія та ортопедія ДУ «Інститут травматології та ...

Скачать
902914
1
0

... ревматизма обусловила значительное снижение заболеваемости — до 0Д8 на 1000 детского населения. В разработку проблемы детского ревматизма внесли большой вклад отечественные педиатры В. И. Молчанов, А. А. Кисель, М. А, Скворцов, А. Б. Воловик, В. П. Бисярина, А. В. Долгополова и др. Эпидемиология, Установлена связь между началом заболевания и перенесенной стрептококковой инфекцией, в основном в ...

Скачать
311023
0
0

... 036.При инфаркте в бассейне передней артерии сосудистого сплетения (передняя ворсинчатая) не бывает #а)гемиплегии #б)гемианестезии *#в)афазии #г)вазомоторных нарушений в области парализованных конечностей #д)гемианопсии 037.Препараты наперстянки и строфанта при декомпенсации дисциркуляторной энцефалопатии назначают #а)для нормализации сердечного ритма ...

Скачать
66575
0
0

... КМГ, которая в начале может быть парциальной. Размеры сердца и степень увеличения отдельных камер в большой сетпени зависят от характера порока. См. Методическое пособие "Дифференциальный диагноз при шумах сердца". Синдром Марфана. Комплекс наследственных аномалий (наследование аутосомно-доминантное), связанных с поражением соединительной ткани. Типичны изменения скелета, включащие ненормально ...

0 комментариев


Наверх