1 Гр = 1 Дж/кг

Повреждение тканей связано не только с количеством поглощенной энергии, но и с ее пространственным распределением, характеризуемым линейной плотностью ионизации, или, иначе, линейной передачей энергии (ЛПЭ). Чем выше ЛПЭ, тем больше степень биологического повреждения.

Для учета этого эффекта вводится понятие эквивалентной дозы Н, оп­ределяемой как произведением поглощенной дозы D на коэффициент каче­ства излучения К:

H = D · K

Коэффициент качества излучения К определяется как регламентиро­ванное значение относительной биологической эффективности (ОБЭ) излу­чения, характери-зующей степень опасности данного излучения по отноше­нию к образцовому рентгеновскому излучению с граничной энергией 200 кэВ.

Таким образом, коэффициент качества позволяет учесть степень опасности облучения людей независимо от вида излучения. При хрониче­ском облучении всего тела его значение составляет: а) для рентгеновского и γ-излучения – 1; б) для β-излучения – 1; в) для протонов с энергией < 10 МэВ – 10; г) для α-частиц с энергией < 10 МэВ – 20.

Единица измерения эквивалентной дозы – зиверт (Зв):

1 Зв = 1 Гр для излучений

В практике часто используется внесистемная единица эквивалентной дозы – бэр:

1 3в= 100 бэр

В реальных условиях облучение бывает неравномерным по телу и ор­ганам. Необходимость сравнения ущерба здоровью от облучения различных органов привела к введению понятия эффективной эквивалентной дозы, определяемой соотношением:

HE = ∑i Li · Hi,

где

Hi – среднее значение эквивалентной дозы в i-ом органе или ткани;

Li – взвешивающий коэффициент, равный отношению риска смерти в результате облучения i-гo органа или ткани к риску смерти от облучения всего тела при одинако-вых эквивалентных дозах.

Т.е. коэффициент Li позволяет пересчитать дозу облучения i-гo органа на эквива-лентную по риску смерти дозу облучения всего тела. Понятие эф­фективной эквива-лентной дозы позволяет, таким образом, сравнить различ­ные случаи облучения с точки зрения риска смерти человека, а также оце­нить суммарный риск при облучении раз-личных органов.

Сравнительная радиопоражаемость органов и тканей характеризуется понятием радиочувствительность. Очевидно, коэффициент U дол­жен быть выше для наиболее радиочувствительных органов. МКРЗ рекомен­дованы следующие показатели Li для различных органов:

Половые железы…………………………………….0,20

Красный костный мозг……………………………..0,12

Легкие……………………………………………….0,12

Щитовидная железа………………………………...0,05

Кость (поверхность)……………………...…………0,01

Остальные органы (ткани)…………………………0,05

Наиболее радиочувствительными являются клетки постоянно обнов­ляющихся тканей (костный мозг, половые железы и т.п.).

В результате облучения живой ткани, на 75% состоящей из воды, проходят первичные физико-химические процессы ионизации молекул воды с образованием высокоактивных радикалов типа Н+ и ОН и последующим окислением этими радика-лами молекул белка. Это косвенное воздействие излучений через продукты разложения воды. Прямое действие может сопро­вождаться расщеплением молекул белка, разрывом связей, отрывом радика­лов и т.п.

В дальнейшем под действием описанных первичных процессов в клетках происхо-дят функциональные изменения, следующие биологическим законам.

ВОЗМОЖНЫЕ ПОСЛЕДСТВИЯ ОБЛУЧЕНИЯ ЛЮДЕЙ

В настоящее время накоплен большой объем знаний о последствиях облучения человека.

Радиационные эффекты облучения людей делят на 3 группы:

1. Соматические (телесные) эффекты – это последствия воздействия на облученного человека, а не на его потомство. Соматические эффекты подразделяются на стохастические (вероятностные) и нестохастические.

К нестохастическим эффектам относятся последствия облучения, ве­роятность возникновения и тяжесть поражения от которых увеличиваются с увеличением дозы облучения и для возникновения которых существует дозовый порог. Это локальные повреждения кожи (лучевой ожог), потемнение хрусталика глаз (катаракта), повреждение половых клеток (стерилизация). В настоящее время считается, что длительное профессиональное облучение дозами до 50 мЗв в год не вызывает у взрослого человека никаких измене­ний, регистрируемых современными методами анализа.

2. Соматико-стохастические эффекты возникают у облученных людей и, в отличие от нестохастических, для них отсутствует порог, а от дозы зави­сит вероятность возникновения, а не тяжесть поражения. К ним относят канцерогенные эффекты поражения неполовых клеток: лейкозы (злокачест­венные повреждения кровообразую-щих клеток), опухоли разных органов и тканей.

3. Генетические эффекты – врожденные аномалии возникают в ре­зультате мутаций и других нарушений в половых клетках. Они являются стохастическими и не имеют порога действия.

Выход стохастических эффектов мало зависит от мощности дозы, а определяется суммарной накопленной дозой независимо от того, получена она за 1 сутки или за всю жизнь.

Соматико-стохастические и генетические эффекты учитываются при оценке воздействия малых доз на большие группы людей. Для этой цели вводится понятие коллективной эквивалентной дозы S, определяемой выра­жением:

S = ∫ N(H) · H · dH,

0

где N(H)·dH – количество лиц, получивших дозу от Н до H+dH. В ка­честве Н может приниматься как Hi, так и НE органа или тела соответствен­но.

Единицей коллективной дозы является человеко-зиверт.

Если коллективная доза меньше 100 чел.Зв, выявление стохастиче­ских эффектов очень сложно, а при нескольких чел.Зв наиболее вероятно нулевое количество эффек-тов. При этом выявление эффекта у отдельного индивида является непредсказуемым.

При этом установлено, что в области средних и больших доз (более 0,25 Зв) био-логический эффект прямо пропорционален эквивалентной дозе.

Для целей радиационной защиты принято допущение, что стохастиче­ские эффекты имеют беспороговую линейную зависимость вероятности возникновения при обычно встречающихся условиях облучения (рис.1). В связи с тем, что коэффициенты зависимости доза-эффект были установлены на основе данных о стохастических воздействиях больших кратковременных доз, их перенос на обычные условия, как считается, вдвое завышает реаль­ный риск малых доз.

Подпись: Биологический эффект

Доза излучения, бэр

 

Рис.1. Зависимость биологического эффекта от дозы облучения

Было установлено, что выход заболеваний со смертельным исходом от злокачест-венных опухолей зависит не только от коллективной дозы, но от пола и возраста и составляет в среднем 125 случаев на 10 чел.Зв при одно­родном облучении всего тела. Соответствующий индивидуальный риск ра­вен 125 · 10 =1,25 · 10-2 (чел.Зв) ·год. Риск же генетических радиационных повреждений составляет 0,4 · 10-2 (чел.Зв) ·год.

Поэтому, если известна коллективная доза облучения S, ожидаемое число случаев смерти N от факторов стохастической природы будет выра­жаться формулой:

N = 10-4 · n · S,

где:

n – ожидаемое количество случаев смерти от злокачественных опухо­лей и генети-ческих дефектов при коллективной дозе 104 чел.Зв, коэффици­ент r = 10-4 · n называют параметром риска – средняя индивидуальная вероятность смерти в результате облуче-ния дозой 1 Зв.

Коэффициент (n) устанавливается на основании данных о случаях смерти от зло-качественных опухолей и генетических дефектов в первых 2-х поколениях потомства лиц, облученных при больших дозах.

Параметр риска r принят равным 1,25 · 10-4 Зв для канцерогенного эффекта и 0,4 · 10-4 Зв для генетического эффекта.

В соответствии с беспороговой линейной концепцией усредненный по населению бывшего СССР риск гибели от рака в 1979 г. был равен 10-3, а от раковых и генети-ческих заболеваний, вызванным естественным (фоновым) облучением – 1,65 · 10-4.

В связи с тем, что соматические эффекты проявляются при довольно высоких дозах облучения (>10 Зв), встает задача нормирования доз облуче­ния исходя из вероят-ностных эффектов в условия принятой беспороговости эффекта их действия. Поэтому норма облучения устанавливается на основе сравнения риска от облучения с риском смерти людей от других причин.

Для производств с низкой степенью опасности работ риск составляет 10-4. Это зна-чение и принимается при установлении нормы облучения для персонала, сотрудников, профессионально подвергающихся облучению.

Для ограниченной части населения МКРЗ считает, что риск должен быть не большим, чем риск от факторов другой природы, но не более 0,1 риска, принятого для персонала. Т.е. для населения риск устанавливается в диапазоне 10-6–10-5 в год.

Исходя из этого устанавливаются основные дозовые пределы.

ПРИНЦИПЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ

Необходимость разработки и внедрения стандартов радиационной защиты была понята еще в начале века.

В 1925 г. в качестве допустимой была предложена 1/10 часть дозы, вызывающей эритему (покраснение) почки за 30 сут.

В 1928 г. создана Международная комиссия по радиационной за­щите МКРЗ и опубликованы ее рекомендации.

В 1934 г. – первые официальные рекомендации МКРЗ для нацио­нальных комите-тов, где в качестве толерантной (переносимрй) была указана доза внешнего облучения 200 мР (~ 2 мГр) в сутки. По мере накопления данных и расширения масштабов использования ионизирующего излучения термин "толерантная доза" был заменен на "предельно-допустимая доза" (ПДД), а норматив сни­жен до 50 мР (~ 0,5 мГр)/сут.

В публикациях МКРЗ № 9 (1966 г.) и № 26 (1977 г.) определены прин­ципы установления ПДД, обоснованы нормативы и обобщен мировой опыт работы с ионизи-рующим излучением.

В СССР (РФ) основным документом, определяющим принципы ра­диационной защиты и устанавливающим нормы облучения являются "Нор­мы радиационной безопасности", принятые национальной комиссией по радиационной защите (НКРЗ) в 1976 г. (НРБ 76/87).

Цель радиационной защиты по определению МКРЗ – обеспечить за­щиту от ионии-зирующего облучения отдельных лиц, их потомства и челове­чества в целом и создать условия для необходимой практической деятельно­сти человека.

При этом МКРЗ полагает, что необходимый для зашиты человека уровень безопасности будет достаточен для защиты других компонентов биосферы, в частности, флоры и фауны. К этому положению следует отно­ситься с известной долей осторожности, т.к. сведений по радиоэкологии еще сравнительно немного, а дозы облучения многих биообъектов много больше доз, которые получает человек.

В настоящее время НКРЗ сформулированы следующие принципы радиационной безопасности:

1. Не превышать установленного основного дозового предела. В каче­стве основного дозового предела устанавливается:

Предельно-допустимая доза – наибольшее значение индиви­дуальной эквивалентной дозы за календарный год, при котором равномерное облучение в тече-ние 50 лет не может вызвать в состоянии здоровья рабо­тающих изменений, обнаружи-ваемых современными методами.

Этот предел устанавливается для лиц – профессионально связанных с работой в условиях возможного облучения – лиц категории А (персонал по НРБ);

Предел дозы – наибольшее среднее значение индивидуальной эк­вивалентной дозы за календарный год у критической группы лиц, при кото­ром равномерное облучение в течение 70 лет не может вызвать в состоянии здоровья неблагоприятных изменений, обнаруживаемых современными методами.

Этот предел устанавливается для ограниченной части населения (категория Б по НРБ), т.е. для лиц, которые не работают непосред­ственно с источниками ионизи-рующих излучений, но по условиям работы и проживания могут быть подвержены об-лучению.

Критическая группа, по которой определяется уровень облучения лиц категории Б, определяется из условия максимально возможного радиацион­ного воздействия.


Информация о работе «Радиоактивное загрязнение окружающей среды»
Раздел: Экология
Количество знаков с пробелами: 36399
Количество таблиц: 3
Количество изображений: 2

Похожие работы

Скачать
47346
3
1

... реализации в послевоенные десятилетия широкомас­штабных программ использования атомной энергии в целях развития во­енной техники и мирных технологий существенно возросло влияние ан­тропогенных источников радиоактивных загрязнений окружающей среды. ■  земная радиация ■  космическая радиация Рис.. Расчетные годовые дозы облучения человека: 1- космические лучи (0,37мЗв); 2 - ...

Скачать
46145
0
0

... здоровью означает лишь материальное выражение этого вреда, а не какое-либо иное, именно поэтому с трудом рассматриваются в судах дела о возмещении морального вреда, причиненного загрязнением окружающей среды).   1.4 Уголовная ответственность В этом подпункте будут рассмотрены принципы уголовной ответственности; преступления против окружающей среды; уголовное наказание. Согласно Закону РФ об ...

Скачать
73351
0
0

... показало, что эпидемия аллергии вызвана не загрязнением воздуха. Если бы виной аллергии было загрязнение окружающей среды, то астма получила бы более широкое распространение в Восточной Германии. При этом эпидемическая аллергия не является некоторым видом генетического заболевания. До недавнего времени большинство экспертов полагало, что аллергия передается по наследству. Если у обоих родителей ...

Скачать
42506
1
0

... (загрязняющих среду) к биологическим (экологически чистым) методам борьбы с вредителями. Использование пестицидов регламентируется законодательством во всех странах.3.Соматические и демографические последствия загрязнений окружающей среды. Изменение среды обитания, происходящее в результате деятельности человека, оказывает на человеческие популяции воздействие, которое по большей части ...

0 комментариев


Наверх