2. Представление переключательной функции в виде полинома Жегалкина.

 

Теорема Жегалкина. Любая переключательная функ­ция может быть представлена в виде полинома (много­члена), т. е. записана в форме

f(x1, . . . , xn) = аоÅ a1x1 Å a2x2 Å …Å anxn Å an+1x1 x2Å … Å aNx1…xn ,

(1)

где a0, a1x1, … aN — константы, равные нулю или единице;

Å —операция сложения по модулю два.

При записи конкретной переключательной функции в виде многочлена коэффициенты a0, a1x1, … aN выпа­дают, так как члены, при которых коэффициенты рав­ны нулю, можно опустить, а коэффициенты, равные еди­нице, не писать.

Для доказательства теоремы Жегалкина предположим, что задана произвольная переключатель­ная функция п аргументов f(x1, . . . , xn), равная еди­нице на некотором числе наборов с номерами m1, … mp.

Покажем, что переключательная функция f(x1, . . . , xn) равна сумме конституент единицы, ко­торые равны единице на тех же наборах, что и данная функция:

f(x1, . . . , xn) = Km1 Å Km2 Å . . . Å Kmp.(2)

Действительно, на каждом из наборов с номерами m1, … mp равна единице только одна конституента, стоящая в правой части выражения (2), а осталь­ные равны нулю. Следовательно, на этих наборах и только на них правая часть выражения (2) принимает значение, равное единице.

Для того чтобы перейти от выражения (2) к виду (1), достаточно представить конституенты едини­цы в виде произведений и, используя соотношение , заменить все переменные с отрицаниями (так как отрицания в выражение (3.1) не входят). Пусть на­пример, конституента единицы записана в виде

.

Тогда получим

Ki= (1 Å x1)x2(1Åx3)x4x5.

Раскрывая скобки и приводя подобные члены в соответствии со свойствами операции сложения по модулю два, получаем запись заданной функ­ции в форме (1), что и доказывает теорему.

Приведенное доказательство теоремы позволяет сформулировать правило представления любой пере­ключательной функции в виде многочлена.

Чтобы переключательную функцию, заданную таблицей истинности, представить в виде полинома Жегалкина, доста­точно записать функцию в виде суммы конституент еди­ницы, равных единице на тех же наборах, на которых равна единице заданная функция. Затем все аргументы, входящие в полученное выражение с отрицанием, заме­нить с помощью соотношения , раскрыть скобки и привести подобные члены с учетом тождества;

x, если п нечетно,

x Å x Å . . . Å x = 0, если п четно.

Пример 3. Представить в виде полинома Жегалкина функцию f58(x1,x2,x3).

Функция f58(x1,x2,x3) равна единице на втором, третьем, четвертом и шестом наборах, и может быть записана в виде суммы соответствующих конституент единицы:

f58(x1,x2,x3) =K2Å K3Å K4Å K6 =.

Используя соотношение , получаем

f58(x1,x2,x3)=(1Åx1)x2(1Åx3)Å(1Åx1)x2x3Å x1(1Åx2)(1Åx3)Åx1x2(1Åx3).

Приводя подобные члены, окончательно находим

f58(x1,x2,x3)= x1Å x2Å x1x2Åx1x3.

3. Совершенная дизъюнктивная нормальная форма переключательной функции.

 

В общем виде пере­ключательная функция п аргументов может быть задана таблицей истинности. Обозначим через f(i) (i=0, … ,2n-1) значение функции на i-м наборе аргументов. Напомним, что каждая из величин f(i) принимает значение нуль или единица. В соот­ветствие i-му набору аргументов можно поставить конституенту единицы Ki, которая принимает значение, равное единице только на данном f(i)наборе. Умножим каждую конституенту единицы Ki на значение функ­ции f(i) и рассмотрим дизъюнкцию произведений fiKi:

. (3)

Если подставить в выражение (3) значения f(i), то получим дизъюнкцию конституент, которые равны еди­нице на тех же наборах, что и заданная функция. Дей­ствительно, ввиду того, что 0×x=0 и 0Úх=х, члены вы­ражения (2), в которых коэффициенты f(i)=0, можно опустить, а так как x×1 = x, то коэффициенты f(i)=1 можно не писать. Тогда

где j1, …,jm – номера наборов, на которых функция равна единице;

m – число таких наборов.

Определение 3. Дизъюнкция конституент единицы, равных единице на тех же наборах, что и заданная функция, называется совершенной дизъюнктивной нормальной формой переключательной функции.

Любую переключательную функцию f(x1, . . . , xn) (кроме константы ноль) можно представить в совершенной дизъюнктивной нормальной форме. Заметим, что любая переключательная функция имеет единственную совершенную дизъюнктивную нормальную форм у: это непосредственно следует из выражения (3).

Совершенную дизъюнктивную нормаль­ную форму переключательной функции удобно находить в такой последователь­ности:

·          выписать ряд произведений всех аргументов и соединить их знаками дизъюнкции; количество произведений должно равняться числу наборов, на которых заданная функция обращается в единицу;

·  записать под каждым произведением набор аргу­ментов, на котором функция равна единице, и над аргу­ментами, равными нулю, поставить знаки отрицания.

Это правило называют иногда правилом запи­си переключательной функции по единицам.

Пример 4. Представить в совершенной дизъюнктивной нормальной форме переключательную функцию четырех аргументов f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные единице, на следующих наборах аргументов:

0001, 0011, 0100, 0101, 1000, 1001, 1010, 1011, 1100, 1101, 1111.

Таким образом, совершенная дизъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из одиннадцати дизъюнкций, каждая из которых представляет собой конъюнкцию четырех элементов:

4. Совершенная конъюнктивная нормальная форма переключательной функции.

 

Если заданная переключательная функция равна единице на большинстве наборов аргументов, то представление функции в совершенной дизъюнктивной нормальной форме может оказаться достаточно громоздким. В этих случаях удобнее использовать другую форму представления функции – совершенную конъюнктивную нормальную форму. Для представления функций в этой форме используется функция конституенты нуля.

Рассмотрим выражение

, (4)

где f(i) – значение переключательной функции на i-м наборе.

Ввиду справедливости соотношений 1Ú x = 1 и 0Úх= х, при подстановке в выражение (4) значений функ­ции f(i), сомножители, у которых f(i), == 1, можно опустить, а значения функции f(i)=0 не писать. Тогда

(5)

где j1, j2, …,jm–номера наборов, на которых функ­ция равна нулю;

т -число таких наборов.

Определение 4. Произведение конституент нуля, которые равны нулю на тех же наборах, что и заданная функция, называется совершенной конъюнктивной нормальной формой.

Любая переключательная функция f(x1, . . . , xn) (кроме константы единицы) может быть пред­ставлена в совершенной конъюнктивной нормальной форме. Любая переключательная функ­ция имеет единственную совершенную конъюнктивную нормальную форму.

Сформулируем правило представления переключа­тельной функции в совершенной конъюнктивной нор­мальной форме. Чтобы представить переключательную функцию п аргументов в совершенной конъюнктивной нормальной форме, достаточно:

·          выписать произведение дизъюнкций всех аргументов с количеством сомножителей, равным числу наборов, на которых заданная функция обращается в нуль;

·          выписать под каждым сомножителем набор аргу­ментов, на котором функция равна нулю, и над аргу­ментами, равными единице, поставить знаки отрицания;

Это правило иногда называют правилом запи­си переключательной функции по нулям.

Пример 5. Представить в совершенной конъюнктив­ной нормальной форме функцию f23805(x1,x2,x3,x4) (см. табл. 2).

Решение. Из табл. 2 видно, что переключательная функция принимает значения, равные нулю, на следующих наборах аргументов:

0000, 0010, 0110, 0111, 1110.

Таким образом, совершенная конъюнктивная нормальная форма функции f23805(x1,x2,x3,x4) будет состоять из пяти конъюнкций, каждая из которых представляет собой дизъюнкцию четырех элементов:


ЛИТЕРАТУРА

 

1.         Белоусов А.И., Ткачев С.Б. Дискретная математика: Учебник для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: изд-во МГТУ им. Н.Э. Баумана, 2001.– 744 с. (Сер. Математика в техническом университете; Вып XIX).

2.         Горбатов В.А. Фундаментальные основы дискретной математики. Информационная математика.– М.: Наука, Физматлит, 2000.– 544 с.– ISBN 5-02-015238-2.

3.         Зарубин В.С. Математическое моделирование в технике: Учеб. для ВУЗов / Под ред. В.С. Зарубина, А.П. Крищенко.– М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.– 496 с. (Сер. Математика в техническом университете; вып. XXI, заключительный).



Информация о работе «Переключательные функции одного и двух аргументов»
Раздел: Математика
Количество знаков с пробелами: 17030
Количество таблиц: 3
Количество изображений: 0

Похожие работы

Скачать
42429
23
2

... значения, получим геометрическое представление функции. Например, булева функция, заданная табл.1, геометрически представляется 3-мерным кубом (рис. 1.в). а) n=1 б) n=2 в) n=3 Рисунок 1- Геометрическое задание булевой функции: а) одной переменной: б) двух переменных; в) трех переменных. При аналитическом способе булева функция задается формулами, т. е. аналитическими выражениями, ...

Скачать
9967
4
1

... схемами с односторонней проводимостью, имеющими конечное число входов и один выход. Простейшие электронные схемы, реализующие элементарные булевы функции (НЕ, И, ИЛИ, ИЛИ-НЕ, И-НЕ), называются логическими элементами (ЛЭ). Аналитическая форма представления булевых функций При решении конкретных технических задач булевы функции, отражающие логические связи, наиболее часто задаются в табличной ...

Скачать
15831
0
0

... — f(x1,x2,x3,x4) = 3-йэтап—f(x1,x2,x3,x4)= что и требовалось получить. Проверить правильность проведенных преобразований можно при помощи пра­вила склеивания. 3. Функционально полные системы логических функций. Анализ принадлежности переключательных функций замкнутым классам показывает, что существуют две переключательные функции f8 и f14, не принадлежащие ни одному классу. Согласно теореме ...

Скачать
61604
22
6

... ответ на этот вопрос положителен. Штрих Шеффера является отрицанием конъюнкции, стрелка Пирса – отрицание дизъюнкции, сумма Жегалкина – отрицание эквивалентности. М. Жегалкин (1869–1947) – российский математик и логик, один из основоположников современной математической логики. Чарльз Пирс (1839–1914) – американский логик, математик и естествоиспытатель. Основоположник семиотики, родоначальник ...

0 комментариев


Наверх