11. Температура хрупкости и эксплуатационные свойства полимеров

Хрупкость - это способность стеклообразных полимеров разрушаться при малых деформациях, меньших, чем деформация, соответствующая пределу вынужденной эластичности.

Хрупкость полимерных стекол принято оценивать по величине температуры хрупкости Тхр. Чем выше Тхр, тем более хрупким считается полимер.

Тхр - это температура, при которой полимер разрушается в момент достижения предела вынужденной эластичности. Чтобы определить Тхр, строят зависимость предела вынужденной эластичности σт от температуры. σт увеличивается с уменьшением температуры.

Когда температура становится ниже Тхр, вынужденная эластичность не развивается , и тогда определяют прочность полимера σр, который стал хрупким.

Зная Тхр и Тс - можно определить интервал температур, в котором полимер ведет себя как упругий, нехрупкий материал. Тхр так же как и Тс зависят от молекулярной массы. При малой молекулярной массе , значения Тс и Тхр совпадают (олигомер). Когда молекулы становятся достаточно длинными и, следовательно, появляется гибкость, Тс растет быстрее чем Тхр и возникает температурный интервал вынужденной эластичности (Тс - Тхр). При дальнейшем росте молекулярной массы Тхр понижается, что приводит к увеличению интервала вынужденной эластичности для высокомолекулярных полимеров.

Эластомеры для расширенного температурного интервала высокоэластичности вулканизируют. Пластмассы для снижения Тхр - модифицируют. Тхр - определяет морозостойкость полимеров.

12. Особенности механических свойств полимеров

Механические свойства определяют изменение структуры, размеров и формы полимеров под действием механических сил. В зависимости от величины действующей силы изделие может либо разрушиться, либо потерять форму, поэтому механические свойства делятся на деформационные и прочностные.

Деформационные - свойства характеризуют способность полимера деформироваться под действием механических нагрузок, а прочностные - способность сопротивляться разрушению. Механические свойства полимеров значительно отличаются от механических свойств других материалов. Отличие в том, что в полимерах существует большая зависимость не только от самого полимера (то есть его строения и состава), но и от характера внешней силы. Именно режим деформирования и характер механической нагрузки часто определяют работоспособность полимерного изделия, различают статические и динамические режимы нагружения.

К статическим относятся режимы при постоянной нагрузке или при малой частоте нагружения.

Динамические режимы включают циклические и ударные нагрузки.

13. Особенности прочностных свойств полимеров

Прочностью называется способность сопротивляться разрушению под действием механических напряжений (выражается в МПа). Разрушением - называется нарушение целостности (сплошности) материала, то есть его разрыв с образованием новых поверхностей. Под теоретической прочностью понимают прочность тела с идеальной структурой (без дефектов) при одноосной статической деформации растяжения и сдвига. Под технической прочностью понимают прочность реальных полимеров. Она ниже теоретической из-за наличия теплового движения и дефектов. Из-за дефектов разрывы определяются не средним напряжением, а местным напряжением на микродефектах, то есть в областях перенапряжения. При значительных нагрузках полимер может разрушаться даже мгновенно. Если же сила невелика, то время до разрушения увеличивается, поэтому различают кратковременную и длительную прочность

Прочность зависит от скорости приложения нагрузки. Для идеального полимера, в котором все цепи одинаково напряжены и рвутся почти одновременно вводится понятие предельно допустимой прочности. Снижение показателя прочности по сравнению с теоретической и предельно допустимой объясняется следующими причинами: 1) неравномерностью нагружения цепей ; 2) существование коротких и длинных цепей и их различная ориентация ; 3) неравномерность структуры на молекулярном и надмолекулярном уровнях, наличие микротрещин, аномальных звеньев.

Под действием механической нагрузки полимер разрушается в несколько стадий: 1) растяжение межатомных связей; 2) разрыв возбужденных связей; 3) образование свободных радикалов; 4) цепные реакции в зоне разорвавшихся связей, которые инициировали свободные радикалы. При этом могут выделяться летучие продукты, которые приводят к образованию микротрещин; 5) прорастание микротрещин их слияние в одну магистральную трещину, которая приводит к разрушению.

14. Особенности деформационных свойств полимеров

Деформацией называется изменение размеров, объема и формы под действием температуры, внешнего механического воздействия или внутренних сил. Деформационные свойства обычно оценивают по кривым σ –ε. На всех кривых наблюдается начальный прямолинейный участок , на котором выполняется закон Гука σ = Е *ε. Напряжение, которое соответствует концу этого участка называется пределом упругости σупр . При дальнейшем нагружении закон Гука не выполняется и общая деформация:

εобщ = εупр + εВЭл + εВТ

 

Относительный вклад каждого вида деформации определяется рядом факторов: 1) условия деформирования (температура и скорость приложения нагрузки); 2) физического состояния полимера; 3) фазовое состояние полимера; 4) химического строения полимера;

Ход кривых σ –ε в значительной степени зависит от релаксационного характера деформации. Он проявляется: 1) в отставании деформации от напряжения при приложении нагрузки; 2) наличия остаточной деформации после снятия нагрузки.

Величина остаточной деформации может служить критерием при делении полимеров на пластичные и эластичные. Пластичные полимеры или пластмассы сохраняют заданную форму и деформацию после удаления деформирующей силы и их остаточная деформация равна первоначальной εост = ε1, а эластичные полимеры то есть эластомеры восстанавливают размеры и форму εост > 0.



Информация о работе «Химия и физика полимеров»
Раздел: Химия
Количество знаков с пробелами: 27290
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
104614
4
26

... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...

Скачать
75897
3
3

... мира, которая реально воздействует на формирование мировоззренческой компоненты их развития как личностей. Вашему вниманию представляется урок на тему: «Полимеры», наполненный экологическим содержанием, позволяющий оценить важную роль перспективы развития экологического самосознания школьников, выявить взаимосвязь между изучаемым объектом и окружающей средой, а также определить роль уроков химии ...

Скачать
48339
0
0

... большая часть проектов физического и физико-химического плана, как уже отмечалось выше, посвящена многокомпонентным полимерным системам. К ним можно отнести такие традиционные двухкомпонентные системы, как растворы и гели полимеров. Основная современная тенденция в этой области физической химии полимеров - акцент на природные полимеры и макромолекулы, способные моделировать определенные типы ...

Скачать
88914
5
9

... коэффициент трения и удельный износ. Результаты исследований приведены на рис№10, №11. Рис.10. Рис.11 Глава IY. Технология изготовления триботехнических материалов на основе полимеров 4.1. Принципы создания композиционных материалов на основе полимеров Эксплуатационная долговечность машин и механизмов в ряде случаев определяется надежностью работы узлов трения. Применение ...

0 комментариев


Наверх