2. Оптическая длина пути

1. Оптической длиной пути называется произведение геометрической длины d пути световой волны в данной среде на абсолютный показатель преломления этой среды n.

s=nd.

2. Разность фаз  двух когерентных волн от одного источника, одна из которых проходит длину пути  в среде с абсолютным показателем преломления , а другая – длину пути в среде с абсолютным показателем преломления :

где , , λ – длина волны света в вакууме.

3. Если оптические длины пути двух лучей равны, , то такие пути называются таутохронными (не вносящими разности фаз). В оптических системах, дающих стигматические изображения источника света, условию таутохронности удовлетворяют все пути лучей, выходящих из одной и той же точки источника и собирающихся в соответствующей ей точке изображения.

4. Величина называется оптической разностью хода двух лучей. Разность хода  связана с разностью фаз :

.

5. При  разность фаз ; удлинению (или укорочению) оптической длины пути одной из волн относительно другой на  соответствует запаздывание (или опережение) первой волны на π. При суперпозиции таких волн их амплитуды вычитаются друг от друга, и в случае равенства амплитуд обеих волн амплитуда результирующей волны равна нулю.

6. Наблюдение интерференции возможно лишь при не слишком больших разностях хода . Если  (τ – средняя продолжительность одного акта излучения света атомом источника, с – скорость света в вакууме, а τс – средняя продолжительность цуга волн в вакууме), то накладывающиеся волны заведомо некогерентны и не интерферируют. Условия наблюдения интерференции при оптической разности хода

т.е. для осуществления интерференции при больших значениях  необходима сильная монохроматизация света.


3. Интерференция в тонких плёнках

1. При наблюдении интерференции монохроматического света, отражённого в вакуум от плоскопараллельной пластинки (рис.3.), оптическая разность хода интерферирующих лучей

=n(AD+DC)-BC+λ/2=

=

где h – толщина пластинки, n – её абсолютный показатель преломления, i – угол падания лучей на пластинку, r – угол преломления лучей в ластинке. Дополнительная разность хода  связана с отражением света от передней поверхности пластинки (оптически более плотной среды), т.е. с изменением при отражении фазы волны на π.

S S

O

B O

i i

A C

h

r r

D

Рис.3.

2. Условия максимумов и минимумов для интерференционной картины, образуемой когерентными волнами, отражёнными от обеих поверхностей пластинки:

 

Здесь k=2m, где m – целое, для минимумов и k=2m+1 для максимумов. Если отражение от обеих поверхностей пластинки происходят с потерями λ./2 (или без них), то интерференционная картина смещается на полполосы, т.е. значения k=2m соответствуют интерференционным максимумам, а k=2m+1 – минимумам.

3. При освещении плоскопараллельной пластинки параллельным пучком лучей белого света пластинка приобретает в отражённом свете цветную окраску. В соответствии с условием п.6. интерференцию в белом свете можно наблюдать лишь на очень тонких пластинках (плёнках), толщина которых не превосходит 0.01 мм. В монохроматическом свете можно наблюдать интерференцию и на значительно более толстых пластинках.

4. Если параллельный или почти параллельный  пучок лучей монохроматического света падает на плёнку, толщина h которой неодинакова в разных местах, то в отражённом свете на верхнеё поверхности плёнки видны тёмные и светлые интерференционные полосы. Эти полосы называют полосами равной толщины , так как каждая из них проходит через точки с одинаковыми значениями h. Полосы равной толщины, локализованные на поверхности плёнки, можно наблюдать также и на экране, если на него спроецировать верхнюю поверхность плёнки с помощью собирающей линзы. В белом свете наблюдается система цветных интерференционных полос равной толщины.

5. При интерференции на прозрачном клине полосы равной толщине параллельной ребру клина. Ширина интерференционных полос при угле падения i=0

где  - угол при вершине клина (, n – абсолютный показатель преломления вещества клина.

В случае протяжённого источника света интерференционная картина наблюдается только от той части клина, вблизи его вершины, для которой , где i – угол падения,  - угол, под которым виден протяжённый источник из точки клина, соответствующий данном h.

6. При интерференции света в воздушном зазоре между плоским чёрным зеркалом и плотно прижатой к нему плоско-выпуклой линзой (рис.4), свет падает нормально на плоскую поверхность линзы, параллельную плоскости чёрного зеркала.

R

P

Рис.4.

Наблюдается система полос равной толщине воздушного зазора, имеющих вид центрических колец (кольца Ньютона). Центры колец совпадают с точкой соприкосновения линзы и зеркала. В отражённом монохроматическом свете радиусы светлых и тёмных колец равны:

и

где R – радиус крутизны нижней поверхности линзы,  - длина волны света в вакууме (воздухе), m=1,0,2,… В центре интерференционной картины находится тёмное пятно.

В белом свете различным длинам волн λ соответствуют разные q, и получается система цветных колец со значительным наложением одних цветов на другие; при больших m интерференционная картина неразличима для глаза.

7. При освещении плоскопараллельной пластинки монохроматическим сходящимся или расходящимся пучком света каждому значению угла падения I соответствует своё значение оптической разности хода . Интерференционная картина наблюдается в фокальной плоскости собирающей линзы, установленной на пути света, отражённого пластинкой. Для монохроматического света интерференционная картина имеет вид чередующихся тёмных и светлых полос. Каждая из этих полос соответствует определённому значению углу падения i, поэтому их называют полосами равного наклона. Полосы равного наклона локализованы в бесконечности. При освещении плоскопараллельной пластинки белым светом полосы равного наклона различно расположены в зависимости от λ и являются цветными. По мере возрастания порядка интерференции m картина смазывается.

8. В случае интерференции N когерентных волн с одинаковыми амплитудами и одинаковыми сдвигами по фазе  между i-ой (i - 1)-й волнами ( не зависит от i) амплитуда A и интенсивность I результирующей волны равны:

Где  - интенсивность каждой из интерферирующих волн.


ЛИТЕРАТУРА

1.   Мирошников М.М. Теоретические основы оптико-электронных приборов: учебное пособие для приборостроительных вузов. -- 2-е издание, перераб. и доп.—Спб.: Машиностроение,20033 -- 696 с.

2.   Порфирьев Л.Ф. Теория оптико-электронных приборов и систем: учебное пособие.— Спб.: Машиностроение,20033 -- 272 с.

3.   Кноль М., Эйхмейер И. Техническая электроника, т. 1. Физические основы электроники. Вакуумная техника.—М.: Энергия, 2001.


Информация о работе «Интерференция света»
Раздел: Физика
Количество знаков с пробелами: 13205
Количество таблиц: 0
Количество изображений: 4

Похожие работы

Скачать
5035
0
0

... усиливается, ¾ пучностями. Оглавление и список литературы. Свет ¾ электромагнитная волна……………………………………..2 Скорость света…………………………………………………………2 Интерференция света………………………………………………….3 Стоячие волны…………………………………………………………3 1.   1.   Физика 11 (Г.Я.Мякишев Б.Б.Ьуховцев) 2.   2.   Физика 10 (Н.М.Шахмаев ...

Скачать
8961
0
0

... света. Последователи Ньютона представили Ньютона как безоговорочного сторонника корпускулярной концепции света. Авторитет имени Ньютона, таким образом, в данном случае сыграл негативную роль - задержал развитие волновой теории света.(2) Сформировавшиеся в предшествующее столетие корпускулярная и волновая концепция света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет ...

Скачать
11561
0
0

... D = 2(AC – AB) = 2l, где l – расстояние между зеркалом M2 и мнимым изображением M1¢ зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1¢ и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму ...

0 комментариев


Наверх