1 Некоторые базисные леммы

В данном разделе доказаны леммы, которые существенным образом используются при доказательстве основного раздела данной главы.

1.1 Лемма [18-A]. Пусть  --- насыщенная формация,  принадлежит  и имеет нормальную силовскую -подгруппу  для некоторого простого числа . Тогда справедливы следующие утверждения:

1) ;

2) , где  --- любое дополнение к  в .

Доказательство. Так как , то , а значит, . Так как  и формация  насыщенная, то  не содержится в . Так как  --- элементарная группа, то по теореме 2.2.16,  обладает -допустимым дополнением  в . Тогда , . Если , то  отлична от  и, значит, принадлежит . Но тогда, ввиду равенства , имеем

отсюда следует  и . Тем самым доказано, что .

Докажем утверждение 2). Очевидно, что  является -корадикалом и единственной минимальной нормальной подгруппой группы , причем . Поэтому, ввиду теоремы 2.2.17,


Очевидно,

. Если , то

отсюда . Значит, . Лемма доказана.

Пусть  и  --- произвольные классы групп. Следуя [55], обозначим через  --- множество всех групп, у которых все -подгруппы принадлежат .

Если  --- локальный экран, то через  обозначим локальную функцию, обладающую равенством  для любого простого числа .

1.2 Лемма [18-A]. Пусть  и  --- некоторые классы групп. Тогда справедливы следующие утверждения:

1)  --- наследственный класс;

2) ;

3) если , то ;

4) если , то  --- класс всех групп;

5) если  --- формация, а  --- насыщенный гомоморф, то  --- формация;

6) если , ,  --- некоторые классы групп и  --- наследственный класс, то  в том и только в том случае, когда ;

7) если  и  --- гомоморфы и , то .

Доказательство. Доказательство утверждений 1), 2), 3) и 4) следует непосредственно из определения класса групп .

Пусть ,  --- нормальная подгруппа группы  и  --- -подгруппа из . Пусть  --- добавление к  в . Покажем, что . Предположим противное. Пусть  не входит в . Тогда  обладает максимальной подгруппой , не содержащей . Поэтому , а значит, , что противоречит определению добавления.

Так как  --- насыщенный гомоморф, то . Но тогда  и . Значит, класс  замкнут относительно гомоморфных образов.

Пусть . Пусть  --- -подгруппа из . Тогда , а значит ввиду определения класса , имеем

Так как  --- формация и , то отсюда получаем, что . Таким образом, .

Докажем утверждение 6). Пусть , . Если  не входит в , то получается, что каждая -подгруппа из  принадлежит , а значит, . Получили противоречие. Поэтому .

Покажем, что . Предположим, что множество  непусто, и выберем в нем группу  наименьшего порядка. Тогда  не входит в . Пусть  --- собственная подгруппа из . Так как классы  и  --- наследственные классы, то . Ввиду минимальности  имеем . Значит, . Получили противоречие. Поэтому .

Докажем утверждение 7). Пусть  и  --- -подгруппа из группы . Отсюда следует, что , . А это значит, что . Отсюда нетрудно заметить, что . Следовательно, . Итак, . Лемма доказана.

1.3 Лемма [18-A]. Пусть  --- наследственная насыщенная формация,  --- ее максимальный внутренний локальный экран. Тогда и только тогда -корадикал любой минимальной не -группы является силовской подгруппой, когда:

1) ;

2) формация  имеет полный локальный экран  такой , что  для любого  из .

Доказательство. Необходимость. Пусть  --- максимальный внутренний локальный экран формации . Пусть  --- произвольное простое число из . Так как  --- насыщенный гомоморф, то по лемме 4.1.2,  --- формация.

Пусть  --- формация, имеющая локальный экран  такой, что  для любого  из . Покажем , что . Согласно теореме 2.2.13,  --- наследственная формация для любого  из . Отсюда нетрудно заметить, что  для любого  из . А это значит, что .

Пусть  --- группа минимального порядка из . Так как --- наследственная формация, то очевидно, что  --- наследственная формация. А это значит, что  и . Покажем, что  --- полный локальный экран, т. е.  для любого  из . Действительно. Пусть  --- произвольная группа из . Отсюда . Пусть  --- произвольная -группа из . Так как , то . Отсюда . Так как  --- полный экран, то . А это значит, что . Следовательно, . Отсюда нетрудно заметить, что . Теперь, согласно теореме 2.2.5, , где  --- единственная минимальная нормальная подгруппа группы ,  --- -группа и . Так как  и , то . Отсюда . Противоречие. Итак, . Покажем, что  для любого  из . Пусть  и  --- -группа. Пусть  --- произвольная -подгруппа из . Тогда . Отсюда . А это значит, что . Противоречие.

Достаточность. Пусть  --- произвольная минимальная не -группа. Так как  разрешима, то по теореме 2.2.5,

где  --- -группа, . Согласно условию,  --- -группа. А это значит, что  --- -замкнутая группа. Но тогда,  --- -замкнутая группа. Согласно лемме 4.1.1,  --- силовская подгруппа группы . Лемма доказана.

1.4 Лемма [18-A]. Пусть  --- наследственная насыщенная формация,  --- ее максимальный внутренний локальный экран. Тогда и только тогда любая минимальная не -группа бипримарна и -замкнута, где , когда:

1) ;

2) формация  имеет полный локальный экран  такой, что  и любая группа из  является примарной -группой для любого простого  из .

Доказательство. Необходимость. Пусть  --- произвольная минимальная не -группа. Согласно условию,  --- бипримарная -замкнутая группа, где . По лемме 4.1.1, . Согласно лемме 4.1.3, формация  имеет полный локальный экран  такой, что  и  для любого простого  из . Покажем, что любая группа из  примарна. Предположим противное. Тогда существует группа  и . Пусть  --- группа наименьшего порядка такая, что . Очевидно, что  и . Нетрудно заметить, что  и  имеет единственную минимальную нормальную подгруппу. Значит, по лемме 2.2.18, существует точный неприводимый -модуль , где  --- поле из  элементов.

Пусть . Покажем, что . Поскольку  и , то .

Пусть  --- собственная подгруппа из . Покажем, что . Пусть . Если , то . Следовательно, . Пусть . Тогда  --- собственная подгруппа из . А это значит, что  и . Так как  и  --- наследственная формация, то . Но тогда и , а значит и .

Пусть теперь . Так как , то  и . Отсюда следует, что . Итак, . Cогласно условию,  бипримарна, что невозможно, т. к. .

Достаточность. Пусть  --- произвольная минимальная не -группа. Согласно условию,  разрешима. По теореме 2.2.5,

где  --- -группа, .

Согласно условию,  --- примарная -группа. А это значит, что  --- бипримарная -замкнутая группа. Но тогда  --- бипримарная -замкнутая группа. Лемма доказана.


2 Критерий принадлежности групп, факторизуемых обобщенно субнормальными -подгруппами, индексы которых взаимно просты, наследственно насыщенным формациям

В данном разделе в классе конечных разрешимых групп получена классификация наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп, индексы которых взаимно просты.

2.1 Теорема [18-A]. Пусть  --- наследственная насыщенная формация, --- ее максимальный внутренний локальный экран. Тогда следующие утверждения эквивалентны:

1) формация  содержит любую группу , где  и  --- -субнормальные -подгруппы и индексы ,  взаимно просты;

2) любая минимальная не -группа  либо бипримарная -замкнутая группа , либо группа простого порядка;

3) формация  имеет полный локальный экран  такой, что  и любая группа из  является примарной -группой для любого простого  из .

Доказательство. Покажем, что из 1) следует 2).

Пусть  --- произвольная минимальная не -группа. Предположим, что , где  --- характеристика формации . Покажем, что  --- группа простого порядка. Пусть . Тогда существует простое число , . Так как , то , что невозможно. Итак,  --- примарная -группа. Так как , то, очевидно, что .

Пусть теперь . Рассмотрим случай, когда .

Покажем, что  имеет единственную минимальную нормальную подгруппу . Предположим противное. Тогда  содержит, по крайней мере, две минимальные нормальные подгруппы  и . Так как , то в группе  найдутся максимальные подгруппы  и  такие, что , . Так как  и  принадлежат , , , то , . Так как  --- формация, то . Получили противоречие. Итак, , где  --- единственная минимальная нормальная -подгруппа группы .

Покажем, что  --- примарная -группа, где . Предположим, что существуют простые числа , где . Тогда в  найдутся максимальные подгруппы  и  такие, что  --- -число,  --- -число. Рассмотрим подгруппы  и . Очевидно, что индексы  и  взаимно просты. Так как  и , то . Согласно лемме 3.1.4, подгруппы  и  -субнормальны в . Так как  --- минимальная не -группа,  и  --- собственные подгруппы группы , то  и . Так как , то согласно условию, . Получили противоречие.

Покажем, что  --- -группа, где . Предположим, что . Так как , то согласно лемме 3.1.4,  --- -субнормальная подгуппа группы . Рассмотрим подгруппу . Так как  --- собственная подгруппа  и , то . Согласно лемме 3.1.4,  --- -субнормальная подгруппа . Очевидно, что  --- -субнормальная подгруппа . По лемме 3.1.4,  --- -субнормальная подгруппа группы . Так как , то из  и условия теоремы следует, что . Получили противоречие. Итак,  --- -группа. Тогда  --- бипримарная -замкнутая группа, где .

Пусть . Рассмотрим фактор-группу . Так как , то, как показано выше,  --- бипримарная -замкнутая группа. Отсюда следует, что  --- бипримарная -замкнутая группа.

Из леммы 4.1.4 следует, что утверждение 3) следует из 2).

Покажем, что из 3) следует 1).

Пусть  --- группа наименьшего порядка такая, что , где  и  --- -субнормальные -подгруппы группы  взаимно простых индексов, то . Так как  --- разрешимая группа и , где , то нетрудно заметить, что , где  и  --- холловские подгруппы группы ,  и , , где ,  --- некоторые элементы группы .

Пусть  --- собственная подгруппа группы . Покажем, что . Так как  --- разрешимая группа, то согласно теореме Ф. Холла [63], , где , , где ,  --- некоторые элементы из . Согласно лемме 3.1.4,  и  --- -субнормальные подгруппы группы . Так как  и , а  --- наследственная формация, то  и  --- -субнормальные подгруппы  и  соответственно. Согласно лемме 3.1.4, нетрудно показать, что  и  --- -субнормальные подгруппы группы , а значит, согласно лемме 3.1.4 и в . Так как , то по индукции, получаем, что . А это значит, что  --- минимальная не -группа.

Если  --- группа простого порядка, то ее нельзя представить в виде произведения собственных подгрупп взаимно простых индексов.

Пусть  --- бипримарная группа. Тогда согласно лемме 4.1.4, . Согласно лемме 4.1.1, . А это значит, что все подгруппы группы , содержащие  -абнормальны, т. е. группа  не представима в виде произведения собственных -субнормальных -подгрупп взаимно простых индексов. Получили противоречие. Теорема доказана.

Напомним, что формация  называется 2-кратно насыщенной, если она имеет локальный экран  такой, что  --- насыщенная формация для любого простого числа  из .

Следующая теорема доказана в классе конечных разрешимых групп.

2.2 Теорема [18-A]. Пусть  --- наследственная 2-кратно насыщенная формация. Тогда следующие утверждения эквивалентны:

1) формация  содержит любую группу , где  и  --- -субнормальные -подгруппы из  взаимно простых индексов;

2)  --- формация Шеметкова;

3) формация  содержит любую группу , где  и  --- -субнормальные -подгруппы из ;

4) .

Доказательство. Покажем, что из 1) следует 2).

Пусть  --- произвольная минимальная не -группа. Рассмотрим случай, когда . Как и в теореме 4.2.1 можно показать, что либо  --- группа простого порядка , где , либо , где  и  из . А также нетрудно показать, что  --- единственная минимальная нормальная подгруппа группы . А это значит, что . Пусть  --- максимальный внутренний локальный экран формации . Если , то из полноты экрана  следует, что . Так как  --- внутренний экран, то . А это значит, что . Противоречие. Итак, .

Покажем, что . Предположим, что это не так. Тогда в  найдется неединичная собственная подгруппа . Рассмотрим подгруппу . Так как  --- минимальная не -группа и  --- собственная подгруппа , то . Покажем, что . Если это не так, то в  существует неединичная нормальная -подгруппа . Тогда . Так как , то , что невозможно. Согласно лемме 2.2.12, . Отсюда . Так как , то . А это значит, что . Так как  --- насыщенная формация, то . Следовательно, , что невозможно. Итак, , значит,  --- группа Шмидта. Итак,  --- группа Шмидта. По лемме 3.1.1,  --- группа Шмидта.

Тот факт, что из 2)  3) следует из теоремы 2.2.19; 3)  4) следует из теоремы 2.2.10; 4)  1) следует из теоремы 2.2.10. Теорема доказана.

Очевидно, что любая сверхрадикальная формация  содержит любую группу , где  и  -субнормальны в  и принадлежат  и имеют взаимно простые индексы в .

Следующий пример показывает, что существует несверхрадикальная наследственная насыщенная формация , содержащая любую группу , где  и  -субнормальны в  и принадлежат  и имеют взаимно простые индексы в .

2.3 Пример. Пусть  --- формация всех сверхразрешимых групп, а  --- формация всех -групп, где ,  и  --- различные простые числа. Рассмотрим формацию . Так как существуют минимальные не -группы, которые не являются либо группой Шмидта, либо группой простого порядка, то  не является формацией Шеметкова. Так как , то согласно теореме 3.3.9, формация  не является сверхрадикальной формацией.

С другой стороны хорошо известно, что любая минимальная несверхразрешимая группа  -замкнута, где . Очевидно, что любая минимальная не -группа  является либо группой простого порядка, либо бипримарной -замкнутой группой, где . Теперь из теоремы 4.2.1 следует, что  содержит любую группу , где ,  и  принадлежат  и  и  --- субнормальны в .


Заключение

В главе 1 доказаны леммы, которые используются для доказательства основных результатов главы 2.

В главе 2 важную роль сыграл метод экстремальных классов, разработанный в работе Картера, Фишера, Хоукса [55] и метод критических групп, разработанный В.Н. Семенчуком в работе [19]. С помощью этих методов в классе конечных разрешимых групп получено описание наследственных насыщенных формаций , содержащих любую группу , где ,  и  принадлежат  и  и  --- -субнормальны в , теорема 2.1 .

Доказано, что любая разрешимая  --- наследственная 2-кратно насыщенная формация, обладающая отмеченным выше свойством, является сверхрадикальной, теорема 2.2 .


Список использованных источников

1. Васильев, А.Ф. О максимальной наследственной подформации локальной формации / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во народного обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1990. -- Вып. 5. -- С. 39--45.

2. Васильев, А.Ф. О решетках подгрупп конечных групп / А.Ф. Васильев, С.Ф. Каморников, В.Н. Семенчук // Бесконечные группы и примыкающие алгебраические системы / Ин-т математики Акад. Украины; редкол.: Н.С. Черников [и др.]. -- Киев, 1993. -- С. 27--54.

3. Васильев, А.Ф. О влиянии примарных -субнормальных подгрупп на строение группы / А.Ф. Васильев // Вопросы алгебры: межведомств. сб. / Мин-во обр. и науки Республики Беларусь, Гомельский гос. ун-т им. Ф. Скорины; редкол.: Л.А. Шеметков [и др.]. -- Гомель, 1995. -- Вып. 8. -- С. 31--39.

4. Васильева, Т.И. О конечных группах с -достижимыми силовскими подгруппами / Т.И. Васильева, А.И. Прокопенко. -- Гомель, 2006. -- 18 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 4).

5. Ведерников, В.А. О локальных формациях конечных групп / В.А. Ведерников // Матем. заметки. -- 1989. -- Т. 46, № 3. -- С. 32--37.

6. Казарин, Л.С. Признаки непростоты факторизуемых групп / Л.С. Казарин // Известия АН СССР. -- 1980. -- Т. 44, № 2. -- С. 288--308.

7. Казарин, Л.С. О произведении конечных групп / Л.С. Казарин // ДАН СССР. -- 1983. -- Т. 269, № 3. -- С. 528--531.

8. Каморников, С.Ф. О некоторых свойствах формаций квазинильпотентных групп / С.Ф. Каморников // Матем. заметки. -- 1993. -- Т. 53, № 2. -- С. 71--77.

9. Каморников, С.Ф. О двух проблемах Л.А. Шеметкова / С.Ф. Каморников // Сибир. мат. журнал. -- 1994. -- Т. 35, № 4. -- С. 801--812.

10. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО АН СССР. -- Новосибирск, 1992. -- 172 с.

11. Коуровская тетрадь (нерешенные вопросы теории групп) // Институт математики СО РАН. -- Новосибирск, 1999. -- 146 с.

12. Легчекова, Е.В. Конечные группы с заданными слабо квазинормальными подгруппами / Е.В. Легчекова, А.Н. Скиба, О.В. Титов // Доклады НАН Беларуси. -- 2007. -- Т. 51, № 1. -- С. 27--33.

13. Монахов, В.С. Произведение конечных групп, близких к нильпотентным / В.С. Монахов // Конечные группы. -- 1975. -- С. 70--100.

14. Монахов, В.С. О произведении двух разрешимых групп с максимальным пересечением факторов / В.С. Монахов // Вопросы алгебры: межведомств. сб. / Мин-во высш. и ср. спец. обр. БССР, Гомельский гос. ун-т; редкол.: Л.А. Шеметков [и др.]. -- Минск: Университетское, 1985. -- Вып. 1. -- С. 54--57.

15. Мокеева, С.А. Конечные группы с перестановочными -субнормальными (-достижимыми) подгруппами / С.А. Мокеева. -- Гомель, 2003. -- 25 с. -- (Препринт / Гомельский гос. ун-т им. Ф. Скорины; № 56).

16. Прокопенко, А.И. О конечных группах с -достижимыми силовскими подгруппами / А.И. Прокопенко // Известия Гомельского гос. ун-та им. Ф. Скорины. -- 2004. -- № 6 (27). -- С. 101--103.

17. Семенчук, В.Н. О минимальных не -группах / В.Н. Семенчук // ДАН БССР. -- 1978. -- № 7. -- С. 596--599.


Информация о работе «Классы конечных групп F, замкнутые о взаимно простых индексов относительно произведения обобщенно субнормальных F-подгрупп»
Раздел: Математика
Количество знаков с пробелами: 31839
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
57480
0
0

... 13-A]. 2. Получено описание наследственных насыщенных сверхрадикальных формаций, критические группы которых разрешимы [20-A]. 3. В классе конечных разрешимых групп получено описание наследственных насыщенных формаций , замкнутых относительно произведения обобщенно субнормальных -подгрупп взаимно простых индексов [18-A]. 4. Доказано, что любая разрешимая 2-кратно насыщенная формация , замкнутая ...

Скачать
48406
0
0

... тогда и только тогда, когда она разложима в произведение попарно перестановочных -подгрупп по разным простым 1.2.35 Т е о р е м а (Кегель [31] – Виландт [4]). Конечная группа, представимая в виде произведения некоторых своих попарно перестановочных нильпотентных подгрупп, разрешима. 1.2.36 Т е о р е м а. Пусть  – некоторое множество простых чисел;  – группа, факторизуемая подгруппами  и  где ...

Скачать
35253
0
0

... из  (элемент ) такой что . Тогда в  и если , тогда Таким образом подгруппа  – (наследственно) -перестановочна с  в . Аналогично можно доказать утверждение (4). Ч.т.д. 4. Конечные группы с заданными -перестановочными подгруппами Используя понятие  – перестановочности мы рассмотрим новые характеристики классов сверхразрешимых, нильпотентных и разрешимых групп. Далее мы докажем р- ...

Скачать
25830
0
0

... такой параллелизм устраняется на основе введенного выше понятия слабой квазинормальности. Таким образом, задача изучения групп с заданной системой слабо квазинормальных подгрупп вполне актуальна, ее реализации посвящена данная работа. 1. Определение и общие свойства слабо нормальных подгрупп Определение. Подгруппа  группы  называется слабо нормальной в  подгруппой, если существует такая ...

0 комментариев


Наверх