4.  Дведення координатним методом теореми про три перпендикуляри.

Теорема про три перпендикуляри: якщо пряма, проведена на площині через основу нахилої, перпендикулярна її проекції, то вона перпендикулярна нахилій. І навпаки: якщо пряма на площині перпендикулярна наклонній, то вона перпендикулярна і проекції нахилій.

Доведення. Нехай АВ- перпендикуляр до площини , АС –нахила та с- пряма в площині  , що проходить через основу С нахилої (малюнок 3). Проведемо пряму  , паралельну прямій АВ. Вона перпендикулярна площині . Проведемо через прямі АВ та  площину  . Пряма с перепендикулярна прямій . Якщо вона перпендикулярна прямій СВ, то вона перпендикулярна площині  , тобто, і прямій АС.

Аналогічно, якщо пряма с перпендикулярна похилій СА то вона, будучи перпендикулярною і прямій , перпендикулярна площині , а значить, і проекції похилій ВС. Теорему доведено.

Того ж самого результату можна досягти, якщо скористатись координатним методом, попередньо задавши відповідні прямі їх напрямними векторами та послідовно використовуючи ознаки паралельності та перпендикулярності прямих у просторі.

Малюнок 2- Доведення теореми про три перпендикуляри.

5.  Доведення методом координат ознаки паралельності двох площин.

Нехай завдані площини  своїми рівняннями:

(14)

 (15)

Оскільки координати загальної точки площин  є розв’язанням системи рівнянь (14),(15) та кожне розв’язання системи рівнянь (14),(15) є координатами загальної точки площин , то питання про взаємне розташування двох площин  зводиться до дослідження системи лінійних рівнянь (14),(15).

Позначимо через r та  відповідно ранги матриць:

Якщо =2, r=1, то система рівнянь (14),(15) несумісна, тому площини  не мають загальних точок, тобто паралельні.

6.  Рівняння сфери. Властивість перетину кулі площиною.

Знайдемо рівняння сфери радіуса r з центром С (a, b, c) в прямокутній системі координат. Точка М простору належить цій сфері тоді та тільки тоді, коли СМ=r або СМ2=r2. Ця рівність в координатах запишеться таким чином:

(16 )

Це – рівняння сфери радіусу r з центром в точці С (a, b, c). Зокрема якщо центр сфери співпадає з початком координат, то a=b=c=0, тому рівність ( 16 ) набуває вигляду :

 (17 )

Рівняння (16) можна записати у вигляді :

 (18 )

де

Таким чином, рівняння будь- якої сфери в прямокутній системі координат має вигляд (18 ). За аналогією з колом можна довести, що якщо коефіцієнти рівняння (18) задовольняють нерівності , то поверхня, задана цим рівнянням є сфера з центром  та радіусом . Перетин кулі площиною є коло- основна властивість перетинів кулі площиною.

Висновки

При написанні курсової роботи при розгляді питань широко використовувався метод координат. Були розглянуті питання прямої та площини у просторі, умови взаємного розташування прямої та площини, умови паралельності та перпендикулярності прямих та площин.

Список використаної літератури

1.  Атанасян Л.С.,Базылев В.Т. Геометрия. В 2-х ч.. Ч.1.- М.: Просвещение,1986.-336 с.

2.Погорелов А.В. Геометрия.-М.:Наука,1983.-288 с.

3.  Атанасян Л.С., Атанасян В.А. Сборник задач по геометрии, ч.1.-М.:Просвещение,1974.

4.  Мальцев А.И. Основы линейной алгебры.-М.: Наука,1970.

 


Информация о работе «Застосування координатного методу в стереометрії»
Раздел: Математика
Количество знаков с пробелами: 12541
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
111254
0
31

... враховуючи їх невелику кількість у підручниках, посібниках та майже повну відсутність серед добірок завдань контролюючого характеру.   2.2 Загальні методичні рекомендації вивчення елементів стереометрії у курсі геометрії 9 класу   2.2.1 Формування уявлень і понять про стереометричні фігури та деякі їх властивості Формування понять – складний психологічний процес, який починається з утворення ...

Скачать
105144
2
4

... метод координат. V. Аксіома паралельності Сама остання аксіома грає в геометрії особливу роль, визначаючи поділ геометрії на дві логічно несуперечливі й взаємно виключають один одного системи: Евклідову й неевклідову геометрії. У геометрії Евкліда ця аксіома формулюється так. V. Нехай а – довільна пряма й А – крапка, що лежить поза прямій а, тоді в площині α, обумовленою крапкою А и ...

0 комментариев


Наверх