42 Нейтронный влагомер: влагомер твердых веществ, принцип действия которого основан на нейтронном методе измерения.

В воздухе всегда содержится определенное количество влаги в виде водяного пара. Там, где наличие водяного пара приводит к возникновению химических, физических и биологических процессов или оказывает влияние на эти процессы, большое значение имеет постоянный контроль за влажностью воздуха. Для определения количества влаги имеются две измерительные величины. Различают абсолютную и относительную влажность.

Абсолютная влажность (точка насыщения)

Абсолютная влажность Fabs показывает такое количество водяного пара, которое содержится в определенном обьеме воздуха.

Воздух, как смесь газа и пара, всегда содержит водяной пар. Водяной пар создает определенное давление, которое называют давлением водяного пара. Оно является частью всего барометрического давления газа.

Давление водяного пара и соответственно абсолютная влажность воздуха могут повышаться при определенной температуре только до предела насыщения. Это максимально возможное давление называют давлением насыщения. Температурная зависимость давления насыщения изображается кривой давления водяного пара.

Давление окружающей среды или наличие других газов не оказывает влияния на кривую давлений водяного пара. Влажность насыщения достигается максимальным количеством водяного пара, смотри диаграмму.

Точка насыщения

При дальнейшем поступлении водяного пара образуется конденсация. Избыточное количество водяного пара проявляется в виде дождя, тумана или конденсата. Насыщенное состояние при этом сохраняется. Если насыщенный теплый воздух охлаждается, то также происходит конденсация. Теперь охлажденный воздух будет впитывать меньше влаги. Температура, при которой это происходит, называется температурой точки насыщения. Она указывается в °С. С помощью точки насыщения можно установить давление водяного пара влажного воздуха по кривой давления водяного пара. Итак, точка насыщения является единицей измерения количества воды во влажном воздухе. Величина абсолютной влажности воздуха подбирается в зависимости от данных расчетных требований. Различные размерности имеют постоянное соотношение друг с другом, смотри диаграмму.

Относительная влажность

Относительная влажность воздуха это отношение фактически имеющейся, т.е. абсолютной влажности воздуха Fabs к максимально возможной влажности воздуха Fsat при данной температуре. Относительная влажность воздуха представляет собой безразмерную величину. Она является передаточным числом и указывается в%.

При высокой температуре воздух может поглощать больше влаги чем при низкой. Максимальная влажность, которую может поглотить воздух, называется влажностью насыщения. До насыщения давление водяного пара и следовательно относительная влажность пропорциональна всему барометрическому давлению. Так как давление насыщения зависит только от температуры, относительная влажность воздуха также зависит от температуры. Относительная влажность уменьшается, если температура повышается и наоборот. Влияние колебаний температуры на относительную влажность может быть значительным.

Зависимости давления насыщенного пара над плоской поверхностью воды и льда от температуры, полученные теоретически на основании уравнения Клаузиуса – Клапейрона и сверенные с экспериментальными данными многих исследователей, рекомендованы для метеорологической практики Всемирной метеорологической организацией (ВМО):

 

ln psw = -6094,4692T-1 + 21,1249952 – 0,027245552 T + 0,000016853396T2 + 2,4575506 ln T

 

ln psi = -5504,4088T-1 – 3,5704628 – 0,017337458T + 0,0000065204209T2 + 6,1295027 ln T,

где psw и psi – давление насыщенного пара над плоской поверхностью воды и льда соответственно (Па);

Т – температура (К).

Приведенные формулы справедливы для температур от 0 до 100ºC (для psw) и от -0 до -100ºC (для psi). В то же время ВМО рекомендует первую формулу и для отрицательных температур для переохлажденной воды (до -50ºC).

2. Методы и средства измерения влажности

Влажность и содержание молекул воды в веществах и материалах являются одним из наиболее важных характеристик состава. Уже указывалось, что влагу необходимо измерять в газах (концентрация паров воды), в смесях жидкостей (собственно содержание молекул воды) и в твердых телах в качестве кристаллизационной влаги, входящей в структуру кристаллов. Соответственно, набор методов и устройств для измерения содержания молекул воды в материалах оказывается весьма разнообразным.

Традиции измерительной техники, опирающиеся на повседневный опыт, привели к тому, что в измерениях влажности сложилась специфическая ситуация, когда в зависимости от влияния количества влаги нате или иные процессы необходимо знать либо абсолютное значение количества влаги в веществе, либо относительное значение, определяемое как процентное отношение реальной влажности вещества к максимально возможной в данных условиях. Если необходимо знать, например, изменение электрических или механических свойств вещества, в этом случае определяющим является абсолютное значение содержания влаги. То же самое относится к содержанию влаги в нефти, в продуктах питания и т.д. В том случае, когда необходимо определить скорость высыхания влажных объектов, комфортность среды обитания человека или метеорологическую обстановку, на первое место выступает отношение реальной влажности, например воздуха, к максимально возможной при данной температуре.

В связи с этим характеристики влажности, а также величины и единицы влажности подразделяются на характеристики влагосостояния и влагосодержания.

Влагосодержание – величины и единицы, выражающие реальное количество влаги в веществе. Основной характеристикой влагосодержания является абсолютная влажность, определяемая как количество влаги в единице объема:

<?xml version="1.0" encoding="UTF-16"?>(1)

К этому классу характеристик можно отнести парциальное давление водяных паров в газах, абсолютную концентрацию молекул воды для газа, близкого к идеальному, определяемую как:

<?xml version="1.0" encoding="UTF-16"?>(2)

где Т – абсолютная температура, n0 – постоянная Лошмидта, равная числу молекул идеального газа в 1 см3 при нормальных условиях, т.е. при p0= 760 Торр= 1015 Гпа и T0 = 273,1б К. Часто используется такая характеристика абсолютной влажности как точка росы, т.е. температура, при которой данная абсолютная влажность газа становится 100%. Эта характеристика привнесена в гигрометрию метеорологам и, т. к. является наиболее характерной при определении момента выпадения росы и определения ее количества.

Влагосостояние – процентное соотношение, равное отношению абсолютной влажности к максимально возможной при данной температуре:


<?xml version="1.0" encoding="UTF-16"?>(3)

Относительная влажность может характеризоваться так называемым дефицитом парциального давления, равного отношению парциального давления влаги к максимально возможному при данной температуре. Очень редко в гигрометрических измерениях можно встретить дефицит точки росы.

Связь между температурой и максимально возможной абсолютной влажностью дается уравнением упругости насыщенных паров воды. Это уравнение имеет вид:

<?xml version="1.0" encoding="UTF-16"?>(4)

На практике чаще пользуются таблицей давления насыщенных паров над плоской поверхностью воды или льда при различных температурах. Эти данные приведены в табл. 1.

Таблица 1. Давление насыщенных паров над плоской поверхностью воды

t°c

Рнк, мбар

Анкг/м3

t°C

Рнк, мбар

Анкг/м3

0 6,108 4,582 31 44,927 33,704
1 6,566 4,926 32 47,551 35,672
2 7,055 5,293 33 50,307 37,740
3 7,575 5,683 34 53,200 39,910
4 8,159 6,120 35 56,236 42,188
5 8,719 6,541 36 59,422 44,576
6 9,347 7,012 37 62,762 47,083
7 10,013 7,511 38 66,264 49,710
8 10,722 8,043 39 69,934 52,464
9 11,474 8,608 40 73,777 55,347
10 12,272 9,206 41 77,802 58,366
t°c

Рнк, мбар

Анкг/м3

t°C

Рнк, мбар

Анкг/м3

11 13,119 9,842 42 82,015 61,527
12 14,017 10,515 43 86,423 64,839
13 14,969 11,229 44 91,034 68,293
14 15,977 11,986 45 95,855 71,909
15 17,044 12,786 46 100,89 75,686
16 18,173 13,633 47 106,16 79,640
17 19,367 14,529 48 111,66 83,766
18 20,630 15,476 49 117,40 87,772
19 21,964 16,477 50 123,40 92,573
20 23,373 17,534 51 129,65 97,262
21 24,861 18,650 52 136,17 102,153
22 26,430 19,827 53 142,98 107,268
23 28,086 21,070 54 150,07 112,581
24 29,831 22,379 55 157,46 118,125
25 31,671 23,759 56 165,16 123,900
26 33,608 25,212 57 173,18 129,917
27 35,649 26,743 58 181,53 136,009
28 37,796 28,354 59 190,22 142,700
29 40,055 30,048 60 199,26 149,482
30 42,430 31,830

На стандартных справочных данных, приведенных в табл. 1, основаны практически все пересчеты характеристик влажности. На их основе можно, например, по известной абсолютной влажности и температуре найти относительную влажность, точку росы и т.д., выразить практически любую характеристику влажности газов.

Среди приборов для измерения влажности наиболее массовыми являются приборы для определения содержания воды в газах – гигрометры. Для измерения влажности твердых и сыпучих тел чаще всего используются те же гигрометры, только процесс подготовки пробы к анализу включает в себя перевод влаги в газовую фазу, которая затем и анализируется. Существуют в принципе методы непосредственного измерения содержания влаги в жидкостях и в твердых телах, например, методом ядерного магнитного резонанса. Приборы, построенные на таком принципе, достаточно сложны, дороги и требуют высокой квалификации оператора.

Гигрометры как самостоятельные приборы являются одними из самых востребованных измерительных приборов, поскольку с давних времен в них нуждались метеорологи. По изменению влажности, также как по изменению давления и температуры, можно предсказывать погоду, можно контролировать комфортность жизнеобеспечения в помещениях, контролировать различного рода технологические процессы. Например, контроль влажности на электростанциях, на телефонных станциях, на полиграфическом производстве и т.д. и т.п. является определяющим в обеспечении нормального режима функционирования.

Востребованность гигрометров породила разработки и изготовление большого количества различных типов приборов. Большинство измерителей влажности представляют собой датчики влажности с индикатором либо аналогового сигнала, либо сигнала в цифровой форме. Поскольку индикаторами являются в большинстве своем либо механические устройства, либо электроизмерительные приборы, рассмотренные в предыдущих разделах, остановимся на датчиках влажности, определяющих почти все функциональные возможности гигрометров.

Датчики гигрометров можно классифицировать по принципу действия на следующие типы:

·           волосяные датчики, в которых используется свойство волоса изменять длину при изменении влажности;

·           емкостные датчики, в которых при изменении влажности изменяется электрическая емкость конденсатора с гигроскопичным диэлектриком;

·           резистивные датчики, в которых изменяется сопротивление проводника, на поверхность которого нанесен гигроскопический слой;

·           пьезосорбционные датчики, в которых влага, поглощенная гигроскопическим покрытием, изменяет собственную частоту колебаний пьезокристалла, на поверхность которого нанесен гигроскопичный слой;

·           датчик температуры точки росы, в котором фиксируется температура, соответствующая переходу зеркального отражения металлической поверхностью в диффузное;

·           оптический абсорбционный датчик, в котором регистрируется доля поглощенной энергии света в полосах поглощения парами воды электромагнитного излучения.

Наиболее древний, наиболее простой и наиболее дешевый датчик влажности представляет собой обычный волос, натянутый между двумя пружинами. Для измерения влажности используется свойство волоса изменять длину при изменении влажности. Несмотря на кажущуюся примитивность такого датчика и на то, что процесс, лежащий в основе измерения, не определяется законами физики и поэтому не поддается расчету, гигрометры с волосяными датчиками изготавливаются в большом количестве.

Емкостные датчики влажности в настоящее время по массовости использования конкурируют и даже превосходят волосяные, поскольку по простоте и дешевизне они не уступают волосяным. Измеряемой физической величиной является емкость конденсатора, а это означает, что в качестве индикатора или выходного устройства может использоваться любой измеритель емкости. На подложку из кварца наносится тонкий слой алюминия, являющийся одной из обкладок конденсатора.

На поверхности алюминиевого покрытия образуется тонкая пленка окиси Al2O3. На окисленную поверхность наносится напылением второй электрод из металла, свободно пропускающего пары воды. Такими материалами могут быть тонкие пленки палладия, родия или платины. Внешний пористый электрод является второй обкладкой конденсатора.

Конструкция резистивного датчика влажности представляет собой меандр из двух не соприкасающихся электродов, на поверхность которого нанесен тонкий слой гигроскопического диэлектрика. Последний, сорбируя влагу из окружающей среды, изменяет сопротивление промежутков между электродами меандра. О влажности судят по изменению сопротивления или проводимости такого элемента.

В последнее время появились гигрометры, в основу работы которых положен фундаментальный физический закон поглощения электромагнитного излучения – закон Ламберта-Бугера-Бера. Согласно этому закону через слои поглощающего или рассеивающего вещества проходит электромагнитное излучение интенсивностью Iλ, равное:

<?xml version="1.0" encoding="UTF-16"?>(5)

где Iλ – интенсивность излучения, падающего на поглощающий столб; N – концентрация поглощающих атомов (число молекул в единице объема); l – длина поглощающего столба, δλ – молекулярная константа, равная площади «тени», создаваемой одним атомом и выраженной в соответствующих единицах.

Пары воды имеют интенсивные полосы поглощения в инфракрасной области спектра и в области длин волн от 185 нм до 110 нм – в так называемой вакуумной ультрафиолетовой области. Имеются отдельные разработки по созданию инфракрасных и ультрафиолетовых оптических влагомеров, и все они имеют одно общее положительное качество – это влагомеры мгновенного действия. Под этим понимается рекордно быстрое установление аналитического сигнала для пробы, помещенной между источником света и фотоприемником. Другие особенности оптических датчиков определяются тем, что в инфракрасной области поглощение молекулами воды соответствует вращательно-колебательным степеням свободы. Это означает, что вероятности переходов, и, соответственно, сечения поглощения в законе Ламберта-Бугера-Бера зависят от температуры объекта. В вакуумной ультрафиолетовой области сечение поглощения от температуры не зависит. По этой причине ультрафиолетовые датчики влажности являются более предпочтительными, но инфракрасная техника, которая используется в ИК датчиках влажности, намного долговечнее и проще в эксплуатации, чем ВУФ техника.

У оптических датчиков имеется и один общий недостаток – влияние на показание мешающих компонентов. В инфракрасной области это различные молекулярные газы, например окиси углерода, серы, азота, углеводороды и т.д. В вакуумном ультрафиолете основным мешающим компонентом является кислород. Тем не менее можно выбрать длины волн в ВУФ, где поглощение кислорода минимально, а поглощение паров воды максимально. Например, удобной областью является излучение резонансной линии водорода с длиной волны А, = 121,6 нм. На этой длине волны у кислорода наблюдается «окно» прозрачности в то время, как пары воды заметно поглощают. Другой возможностью является использование излучения ртути с длиной волны 184,9 нм. В этой области кислород излучения не поглощает и весь сигнал поглощения определяется парами воды.

Одна из возможных конструкций оптического датчика влажности дана на рис. 4. Резонансная водородная лампа с окном из фтористого магния располагается на расстоянии в несколько миллиметров от фотоэлемента с катодом из никеля. Никелевый фотоэлемент имеет длинноволновую границу чувствительности -190 нм. Окна из фтористого магния имеют коротковолновую границу прозрачности 110 нм. В этом диапазоне длин волн (от 190 до 110 нм) в спектре водородной лампы присутствует только резонансное излучение 121,6 нм, которое и используется для измерения абсолютной влажности без какой-либо монохроматизации.

У оптического датчика, схема которого изображена на рис. 4 есть еще одна особенность – возможность изменять чувствительность изменением расстояния от лампы до фотоприемника. В самом деле, с увеличением расстояния наклон характеристики dU/dN выходного сигнала от концентрации прямо пропорционален величине зазора между лампой и фотодиодом.

Важным качеством оптического датчика является следствие из закона Ламберта-Бугера-Бера, состоящее в том, что такой датчик нужно калибровать только в одной точке. Если, например, определить сигнал с прибора при какой-либо одной определенной концентрации паров воды, то отградуировать шкалу прибора можно расчетным путем на том основании, что изменение логарифма сигналов при различных концентрациях равно:

<?xml version="1.0" encoding="UTF-16"?>(6)

где N – концентрация (число) молекул в единице объема; δλ – сечение поглощения, I – длина поглощающего промежутка.

Для определения относительной и абсолютной влажности на практике часто используются приборы, получившие название психрометров. Психрометры представляют собой два одинаковых термометра, один из которых обернут фитилем и смачивается водой. Мокрый термометр показывает температуру ниже, чем сухой термометр в том случае, если относительная влажность не равна 100%. Чем ниже относительная влажность, тем больше разность показаний сухого и мокрого термометров. Для психрометров различных конструкций составляются так называемые психрометрические таблицы, по которым находятся характеристики влажности.

Психрометр не очень удобен в эксплуатации, поскольку его показания не просто автоматизировать, и требуется постоянное увлажнение фитиля. Тем не менее именно психрометр является самым простым и вместе с тем достаточно точным и надежным средством измерения влажности. Именно по психрометру чаще всего градуируются гигрометры с волосяными, емкостными или резистивными датчиками.

В заключение кратко остановимся на методах измерения влажности жидкостей и твердых материалов. Наиболее распространенным является метод высушивания или выпаривания влаги из вещества с последующим взвешиванием. Обычно пробу высушивают до тех пор, пока не перестанет изменяться ее вес. При этом, естественно, делается два допущения. Первое – что вся сортированная и химически связанная влага при выбранном режиме выпаривания улетучивается. И второе – что вместе с влагой не испарится никакой другой компонент. Очевидно, что во многих случаях гарантировать корректность выполнения процедур выпаривания очень сложно. Другим универсальным методом измерения влажности жидких и твердых тел является метод, когда влага из них переходит в газовую фазу в каком-либо замкнутом объеме. В этом случае стандартизуют методику подготовки пробы, а измерения ведут одним из упомянутых типов гигрометров, предназначенных для измерений влаги в газовой фазе. С целью получения надежных результатов такие устройства калибруют по стандартным образцам влажности.


Информация о работе «Датчики влажности»
Раздел: Физика
Количество знаков с пробелами: 47493
Количество таблиц: 7
Количество изображений: 1

Похожие работы

Скачать
35289
1
16

... Взвешивания навески для определения влажности не тре­буется. Образец испытывается при определенном давлении (около 0,7 кГ/см2), создаваемом при вращении рычага пружина имеет предварительное натяжение. Датчик влажности для формовочной смеси Ограничение силы сжатия материала калиброванной пружиной применено в датчике для формовочной смеси ли­тейного производства (Приложение … рис1). Датчик- ...

Скачать
53257
7
32

... хорошая очень хорошая Среди всех типов емкостные датчики, благодаря полному диапазону измерения, высокой точности и температурной стабильности, получили наибольшее распространение как для измерения влажности окружающего воздуха, так и применения в производственных процессах. Компания Honeywell производит семейство емкостных датчиков влажности, применяя метод многослойной структуры (рис. 2.8), ...

Скачать
13254
0
0

... спектральной чувствительности CdS приходится приблизительно на свет с длиной волны 500-550 нм, что соответствует приблизительно середине зоны чувствительности человеческого зрения. Оптические датчики, работающие на эффекте фотопроводимости, рекомендуется использовать в экспонометрах фото- и кинокамер, в автоматических выключателях и регуляторах света, обнаружителях пламени и др. Недостаток этих ...

Скачать
96103
12
8

... управления осуществляется с помощью автоматизированного модуля верхнего уровня, который также отвечает за интерфейс на посту оператора. 3.1 Требования к структуре системы Автоматизированная система управления и контроля климата в тепличных хозяйствах выполнена на базе микропроцессорной техники. По иерархическому принципу АСУ ККТХ должна подразделяться на уровни: нижний уровень: -  ...

0 комментариев


Наверх