2. Белый цвет есть совокупность простых цветов.

Зная, что белый свет имеет сложную структуру, можно объяснить удивительное многообразие красок в природе. Если предмет, например, лист бумаги, отражает все падающие на него лучи различных цветов, то он будет казаться белым. Покрывая бумагу слоем краски, мы не создаем при этом света нового цвета, но задерживаем на листе некоторую часть имеющегося. Отражаться теперь будут только красные лучи, остальные поглотятся слоем краски. Трава и листья деревьев кажутся нам зелеными потому, что из всех падающих на них солнечных лучей они отражают лишь зеленые, поглощая остальные. Если посмотреть на траву через красное стекло, пропускающее лишь красные лучи, то она будет казаться почти черной.

Мы знаем в настоящее время, что разным цветам соответствуют различные длины световых волн. Поэтому первое открытие Ньютона можно сформулировать следующим образом: показатель преломления вещества зависит от длины световой волны. Обычно он увеличивается по мере уменьшения длины волны.

1.2 Интерференция

Интерференцию света наблюдали очень давно, но только не отдавали себе в этом отчет. Многие видели интерференционную картину, когда в детстве развлекались пусканием мыльных пузырей или наблюдали за радужным переливом цветов тонкой пленки керосина на поверхности воды. Именно интерференция света делает мыльный пузырь столь достойным восхищения.

Английский ученый Томас Юнг первым пришел к гениальной мысли о возможности объяснения цветов тонких пленок сложением двух волн, одна из которых (А) отражается от наружной поверхности пленки, а вторая (В)– от внутренней (рис.2)

В

 

А

 

Рис.2

При этом происходит интерференция световых волн – сложение двух волн, вследствие которого наблюдается усиление или ослабление результирующих световых колебаний в различных точках пространства. Результат интерференции (усиления или ослабление результирующих колебаний) зависит от толщины пленки и длины волны. Усиление света произойдет в том случае, если преломленная волна 2 (отражающаяся от внутренней поверхности пленки) отстанет от волны 1 (отражающейся от наружной поверхности пленки) на цело число длин волн. Если же вторая волна отстанет от первой на половину длины волны или на нечетное число полуволн, то произойдет ослабление света.

Для того чтобы при сложении волн образовалась устойчивая интерференционная картина, волны должны быть когерентными, т.е. должны иметь одинаковую длины волны и постоянную разность фаз. Когерентность волн, отраженных от наружной и внутренней поверхности пленки, обеспечивается тем, что обе они являются частями одного светового пучка. Волны же, испущенные двумя обычными независимыми источниками, не дают интерференционной картины из-за того, что разность фаз двух волн от таких источников не постоянна.

Юнг также понял, что различие в цвете связано с различием в длине волны (или частоте световых волн). Световым потокам различного цвета соответствуют волны различной длины. Для взаимного усиления волн, различающихся друг от друга длиной, требуется различная толщина пленки. Следовательно, если пленка имеет неодинаковую толщину, то при освещении ее белым светом должны появиться различные цвета.

 

1.3 Дифракция. Опыт Юнга

Дифракция света в узком смысле - явление огибания светом препятствий и попадание света в область геометрической тени; в широком смысле - всякое отклонение при распространении света от законов геометрической оптики.

Определение Зоммерфельда: под дифракцией света понимают всякое отклонение от прямолинейного распространения, если оно не может быть объяснено как результат отражения, преломления или изгибания световых лучей в средах с непрерывно меняющимся показателем преломления.

В 1802г. Юнг, открывший интерференцию света, поставил классический опыт по дифракции (рис.3).

Рис.3

В непрозрачной ширме, он проколол булавкой два маленьких отверстия B и C, на небольшом расстоянии друг от друга. Эти отверстия освещались узким световым пучком, прошедшим в свою очередь через малое отверстие А в другой ширме. Именно эта деталь, до которой очень трудно было додуматься в то время, решила успех опыта. Интерферируют только когерентные волны. Возникшая в соответствии с принципом Гюйгенса сферическая волна от отверстия А возбуждала в отверстиях В и С когерентные колебания. В следствии дифракции из отверстий В и С выходили два световых конуса, которые частично перекрывались. В результате интерференции световых волн на экране появлялись чередующиеся светлые и темные полосы. Закрывая одно из отверстий, Юнг обнаруживал, что интерференционные полосы исчезали. Именно с помощью этого опыта впервые Юнгом были измерены длины волн, соответствующие световым лучам разного цвета, причем весьма точно.

Исследование дифракции получило свое завершение в работах Френеля. Он детально исследовал различные функции дифракции на опытах и построил количественную теорию дифракции, позволяющую рассчитать дифракционную картину, возникающую при огибании светом любых препятствий.

С помощью теории дифракции решают такие проблемы, как защита от шумов с помощью акустических экранов, распространение радиоволн над поверхностью Земли, работа оптических приборов (так как изображение, даваемое объективом, - всегда дифракционная картина), измерения качества поверхности, изучение строения вещества и многие другие.


Информация о работе «Волновые и корпускулярные свойства света»
Раздел: Физика
Количество знаков с пробелами: 21900
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
39282
0
0

... о качественном многообразии форм материи и их взаимообусловленности. Таким образом, открытие квантово-механических свойств привело к переосмыслению соотношения дискретности и непрерывности.   7. КОНТИНУАЛЬНАЯ КОНЦЕПЦИЯ Сложившиеся к началу XIX в. представления о строении материи были односторонними и не давали возможности объяснить ряд экспериментальных факторов. Разработанная М. Фарадеем и ...

Скачать
41862
0
5

... – с частотой (или длиной волны). Однако корпускулярно – волновая природа света не означает, что свет – это и частица, и волна в привычном классическом их представлении. Взаимосвязь корпускулярных и волновых свойств света находит простое истолкование при статистическом (вероятном) подходе к рассмотрению распределения и распространения фотонов в пространстве. 1)       Рассмотрим дифракцию ...

Скачать
32479
0
2

... положений равновесия колеблются электроны; суммарный заряд электронов равен положительному заряду шара, поэтому атом в целом нейтрален. Однако предположение о непрерывном распределении положительного заряда внутри атома не подтвердилось экспериментом. В развитии представлений о строении атома велико значение опытов английского физика Э. Резерфорда (1871-1937) по рассеянию альфа-частиц в веществе ...

Скачать
57954
2
0

... существуют нейтральные микрообъекты (например, фотон, нейтрино, нейтрон). Электрический заряд сложного микрообъекта равен алгебраической сумме зарядов составляющих его частиц. 4. Идея корпускулярно-волнового дуализма как методологический принцип Классическая физика знакомит с двумя видами движения -корпускулярным и волновым. Для первого характерны локализация объекта в пространстве и ...

0 комментариев


Наверх