3.4 Выбор гасителя колебаний

Выбираем по [1] гидравлический гаситель колебаний производства Чехословакии ТБ 140. Его характеристики приведены в таблице 3.1.


Таблица 3.1 Технические характеристики гидравлического гасителя колебаний

Показатели Величина

Параметр сопротивления, кН·с/м

Масса гасителя, кг

Диаметр цилиндра, мм

Диаметр штока, мм

Ход поршня, мм

Наименьшая длина между осями головок, мм

100

10.5

63

35

140

310

320


4. РАСЧЁТ РАМЫ ТЕЛЕЖКИ НА СТАТИЧЕСКУЮ И УСТАЛОСТНУЮ ПРОЧНОСТЬ

 

4.1 Составление расчётной схемы рамы тележки и определение величины действующих нагрузок

Расчётная схема рамы тележки пассажирского электровоза имеет вид показанный на рисунке 4.1.

Численные значения сил P1- P4 и R рассчитываются по формулам

 (4.1)

 (4.2)

P3=9.8·(Mспб+Mтэд) (4.3)

P3=9.8·(0.312+3.4)=36.38 кН

P5=9.8·0.5·Mтэд (4.4)

P5=9.8·0.5·3.4=16.66 кН

 (4.5)

Расстояния между расчётными точками для схемы рисунка 4.1 определяются по следующим формулам:


l1=bт/2 (4.6)

l5=lт/2-B1/2 (4.7)

l3=lкчб-B1/2+lпчб/2 (4.8)

l4=l5-2·aт/2+L/2 (4.9)

l2=l5-2·aт/2-L/2 (4.10)

l6=l5-(lподв+D+B2/2) (4.11)

l1=2.1/2=1.05 м

l5=4.4/2-0.15/2=2.125 м

l3=0.44-0.15/2+1.254/2=0.992 м

l4=2.125-2.74/2+0.7/2=1.105 м

l2=2.125-2.74/2-0.7/2=0.405 м

l6=2.125-(1.18+0.04+0.3/2)=0.755 м

4.2 Расчёт и построение единичных эпюр изгибающих и крутящих моментов

При нагружении расчётной схемы рамы тележки единичным моментом X1 деформацию изгиба испытывают передняя концевая поперечная балка (участок 1-2, рис 5.2) и средняя поперечная балка (участок 15-16), а деформацию кручения левая часть боковины (участок 3-7).

В этом случае изгибающие моменты:

При нагружении расчётной схемы рамы тележки единичным моментом X2 деформацию изгиба испытывают задняя концевая поперечная балка (участок 13-14) и средняя поперечная балка (участок 15-16), а деформацию кручения правая часть боковины (участок 8-12).

В этом случае изгибающие и крутящие моменты


4.3 Расчёт и построение эпюр изгибающих и крутящих моментов от внешней нагрузки

Расчётная схема заданной схемы представлена не только сосредоточенными силами, приложенными по осевой линии боковины, и симметричными относительно средней поперечной балки, но и сосредоточенными силами, приложенными к концевым поперечным балкам со смещением относительно их осевых линий. В результате внешняя нагрузка для рассматриваемой расчётной схемы вызывает деформацию изгиба и кручения.

Изгибающие моменты в расчётных точках определяются следующими выражениями

Ми2= -P5·l4/2 (4.12)

Ми3= P5·l6/2 (4.13)

Ми4= P5·l6/2-P1·l2 (4.14)

Ми5= P5·l6/2-P1·l3+R·(l3-l2)-P2·(l3-l6)/2 (4.15)

Ми6= P5·l6/2-P1·l4+R·(l4-l2)-P5·(l4-l6)/2 (4.16)

Ми7=P5·l6/2-P1·l5+R·(l5-l2)-P5·(l5-l6)/2+R·(l5-l4) (4.17)

Ми8=P5·l6/2-P4·l5+R·(l5-l2)-P5·(l5-l6)/2+R·(l5-l4) (4.18)

Ми9=P5·l6/2-P4·l4+R·(l4-l2)-P5·(l4-l6)/2 (4.19)

Ми10=P5·l6/2-P4·l3+R·(l3-l2)-P5·(l3-l6)/2 (4.20)

Ми11=P5·l6/2-P4·l2 (4.21)

Ми12=P5·l6/2 (4.22)

Ми13=-P5·l4/2 (4.23)

Mи16=(4·R-P1-P2-P4-P5)·l1 (4.24)

Ми2= -8.75 кН·м Ми3= 6.29 кН·м

Ми4= 3.28 кН·м Ми5= 20.17 кН·м

Ми6= 22.86 кН·м Ми7= 87.51 кН·м

Ми8= 87.51 кН·м Ми9=22.86 кН·м

Ми10=20.17 кН·м Ми11=3.28 кН·м

Ми12=6.29 кН·м Ми13=--8.75 кН·м

Mи16=19.08 кН·м

Крутящие моменты для участков расчётной схемы определяются следующим образом

Mк1-2=-P5·l6/2 (4.25)

Mк3-7=-P5·l1/2 (4.26)

Mк8-12=-P5·l1/2 (4.27)

Mк13-14=P5·l6/2 (4.25)

Mк1-2=--6.29 кН·м Mк3-7=8.75 кН·м

Mк8-12=-8.75 кН·м Mк13-14=6.29 кН·м

Построенные в результате расчётов эпюры представлены на рисунке 4.3.

4.4 Расчёт единичных и грузовых перемещений, определение численных значений Х1 и Х2

Единичные перемещения рассчитываются по формулам:

 (4.27)

 

 (4.28)

м

 (4.29)

Грузовые перемещения

Составляем систему канонических уравнений метода сил для расчёта рамы тележки при статической вертикальной нагрузке

d1,1·X1+d1,2·X2+D1,р=0

d2,1·X1+d22·X2+D2,р=0

X1=7.261;

X2=7,261.

Значения результирующих изгибающих моментов

По результатам строим результирующую эпюру изгибающих моментов от X1 и X2 (рисунок 4.5). Значения результирующих крутящих момент

Результирующая эпюра крутящих моментов представлена на рисунке 4.6

Информация о работе «Разработка системы рессорного подвешивания пассажирского электровоза»
Раздел: Транспорт
Количество знаков с пробелами: 24995
Количество таблиц: 10
Количество изображений: 2

Похожие работы

Скачать
48545
3
10

... процесса ремонта одного из узлов тепловоза; – экономическая эффективность проекта организации работ в ремонтном подразделении; – безопасность жизнедеятельности при ремонтных работах. 1. РАЗРАБОТКА УЧАСТКА ПО РЕМОНТУ ТЕЛЕЖЕК ЛОКОМОТИВОВ В ЛОКОМОТИВНОМ ДЕПО ХАБАРОВСК 2   1.1 Анализ существующей организации работ в ремонтном подразделении 1, 4 - накладки; 2 – концевые брусья; 3 – боковины; ...

Скачать
125770
27
17

... участка. Принимаем процент узлов и деталей, поступающих в ремонт на условиях кооперации из эксплуатационного депо для тележечного участка =30% Принимаем программу для тележечного участка 1000 ед. 2. Совершенствование технологии контроля автосцепочного устройства   2.1 Виды и порядок осмотра автосцепочного устройства Автосцепное устройство подвижного состава должно постоянно находиться ...

Скачать
102996
10
1

... водителя и пассажиров в случае аварии. Это может быть достигнуто за счет применения таких средств защиты, как ремни безопасности, подушки безопасности, а также активные подголовники, защищающие шейные позвонки при ударе сзади. 3. Воздушный транспорт Техническая характеристика самолета ЯК-42   № п/п Наименование Единицы измерения Данные 1 2 3 4 1 ...

Скачать
53871
15
0

... территории с размещением всех сооружений, обустройств и тракционных путей показываем на генеральном плане локомотивного депо. 1.11 Расчет бальности проектируемого депо Исходя из численности эксплуатируемого парка локомотивов и общего объема работы основным локомотивным депо по установленной ОАО «РЖД» бальной системе присваиваются группы: I – свыше 380 баллов, II – от 180 до 380 баллов, III – ...

0 комментариев


Наверх