3.2.2 Агрегатный состав

Совокупность агрегатов различной величины, формы и качественного состава называется структурой почвы. Структура – важнейшая агрономическая характеристика почв. От нее зависят общие физические, физико-механические, водные, воздушные и тепловые свойства почв, окислительно-восстановительные условия и связанные с ними условия микробиологической деятельности и другие свойства и режимы почв.

Распределение структурных агрегатов в массе почвы в соответствии с их размерами определяет агрегатный состав почвы. По данным А.А. Яскина и других (В.П. Ковриго, 2000), структурные агрегаты по размеру делят на 3 группы: глыбистая структура – размер более 10 мм; макроструктура – размер 10,0-0,25 мм; микроструктура – размер менее 0,25 мм.

Агрономически ценной является комковатая и зернистая макроструктура верхних горизонтов почвы размером от 0,25 до 10 мм, обладающая водопрочностью и связностью.

Количественный и качественный состав макроструктурных отдельностей почвы в значительной степени определяет также ее противоэрозионную устойчивость. Агрегаты диаметром более 2 мм являются эффективным защитным противоэрозионным слоем. Менее эффективна роль агрегатов размером 1-2 мм, а агрегаты менее 0,5 мм совсем неэффективны и легко переносятся ветром.

Комковатость слоя 0-5 см является диагностическим признаком устойчивости почв к ветровой эрозии, если на поверхности нет борозд или стерни, которые изменяют этот признак в ту или иную сторону.

Созданию благоприятных физических свойств почвы и условий плодородия способствуют агрегаты от 10 до 0,25 мм; с точки зрения ветроустойчивости, лишь агрегаты крупнее 1 мм обладают большей устойчивостью в течение летнего сезона.

В наших исследованиях (таблица 3), на глубине 0-5см, у черноземов выщелоченных целины ветроустойчивые агрегаты (более 1 мм) составляют 67,1 %, очень близок этот показатель на пашне (64,6 %). Эрозионно-опасная фракция составляет 32,9 % и 35,4 % соответственно.

При проведении сухого просеивания видно, что выщелоченные черноземы ветровой эрозии не подвержены. Содержание эрозионно-опасной фракции в этих почвах сравнительно невелико, но на пашне их больше на 2,5 %.


Таблица 3

Агрегатный состав черноземов выщелоченных

Название почвы Содержание фракций, % при размере, мм
<0.25 0.25-0.5 0.5-1 1-2 2-3 3-5 5-7 7-10 >10

Сухое просеивание.

Целина

8,6 4,8 6,0 19,3 13,6 14,4 11,5 8,3 13,5
Пашня 9,8 5,6 5,6 18,8 12,1 13,7 10,2 9,8 14,4

Мокрое просеивание.

Целина

12,4 2,8 12,1 10,6 7,4 9,2 11,3 14,0 20,2
Пашня 25,4 5,3 6,1 12,7 9,5 9,0 7,5 6,7 17,8

При мокром просеивании чернозема выщелоченного среднесуглинистого количество водопрочных агрегатов размером 1-10 мм на пашне 45,4 %. Данные почвы хотя и слабо, но подвержены водной эрозии, причиной этого является распашка, способствующая дезагрегации почвы. На целине в черноземах выщелоченных количество агрегатов более 1 мм - 52,5 %(таблица 3). До крайнего допустимого предела устойчивости интервал составляет всего 2,5 %. Следовательно, эти почвы генетически подвержены водной и слабо подвержены ветровой эрозии.

Противоэрозионная устойчивость черноземов обыкновенных среднесуглинистого состава иная (таблица 4).

При сухом просеивании количество эрозионно-устойчивых агрегатов более 1 мм на пашне составляет 48,8 %, на целине – 63,9 %. Сравнивая показатели ветроустойчивости на черноземе обыкновенном (агрегаты более 1 мм) на целине и пашне, можно увидеть, что пашня подвержена больше ветровой эрозии. Это связано с применением различных агротехнических мероприятий, отклонениями от принятых технологий.

В то же время пашня может подвергаться и водной эрозии.


Таблица 4

Агрегатный состав черноземов обыкновенных

Название почвы Содержание фракций, % при размере, мм
<0.25 0.25-0.5 0.5-1 1-2 2-3 3-5 5-7 7-10 >10

Сухое просеивание.

Целина

14,7 2,7 3,1 8,5 17,3 10,8 6,7 20,6 15,6
Пашня 21,3 5,4 0,6 6,9 14,0 2,7 6,8 18,4 23,9

Мокрое просеивание.

Целина

21,8 7,0 5,8 4,6 12,1 6,2 9,3 20,5 12,7
Пашня 23,7 7,4 6,3 7,9 8,4 12,4 9,2 10,9 13,8

Количество водопрочных агрегатов здесь составляет 48,8 %, на целине же количество агрегатов больше 1 мм – 52,7 %. До крайнего допустимого предела или порога устойчивости интервал составляет всего 2,7 %.

Таким образом, черноземы обыкновенные в пашне подвержены как водной, так и ветровой эрозии.

При исследовании агрегатного состава чернозема южного (таблица 5) видно, что эти на пашне почвы сильно подвержены ветровой эрозии. Количество ветроустойчивых агрегатов составляет всего 28,9 %, а водопрочных – 30,8 %.

По мнению А.П. Щербакова (2000), процесс агрогенной деградации может распространяться на глубину более 0,5 м и обычно усиливается в условиях орошения.

Таким образом, при распашке все черноземы Челябинской области подвержены в разной степени водной, а черноземы обыкновенные и южные и ветровой эрозии. Наиболее устойчивым к эрозионным процессам является чернозем выщелоченный, который даже на пашне слабо подвергается только водной эрозии.

Таблица 5

Агрегатный состав черноземов южных

Название почвы Содержание фракций, % при размере, мм
<0.25 0.25-0.5 0.5-1 1-2 2-3 3-5 5-7 7-10 >10

Сухое просеивание.

Целина

3,6 7,5 11,1 5,8 18,6 9,8 10,5 12,7 20,4
Пашня 36,4 13,0 10,1 8,0 6,3 3,8 5,5 5,3 11,6

Мокрое просеивание.

Целина

23,0 8,3 7,6 12,5 11,1 8,3 9,9 10,8 8,5
Пашня 42,6 6,6 6,7 6,8 3,7 7,8 5,0 7,5 13,3

Целина же более устойчива к эрозионным процессам. В пахотных эродированных почвах уменьшается содержание пылеватой и илистой фракций, что вызывает существенные изменения в их химическом составе. При этом происходит значительный вынос органического вещества и элементов питания растений, дезагрегирование почвы.

Рассматривая физические и водные свойства черноземов Челябинской области видно, что они подвержены деградации, а, следовательно, возможно изменение хода почвообразовательных процессов в негативную сторону – снижение гумусово-аккумулятивного процесса, развитие осолонцевания, а вслед за ним осолодения. В большей степени деградационные изменения проявятся в черноземах обыкновенном и южном.

Таким образом, применение почвосберегающих технологий, повышающих или сохраняющих содержание гумуса, может привести к интенсивному гумусово-аккумулятивному процессу, улучшающему агрегатный состав и другие свойства черноземов.

 


Информация о работе «Анализ изменения состава и свойств черноземов лесостепи и степи Зауралья при распашке»
Раздел: Ботаника и сельское хозяйство
Количество знаков с пробелами: 105445
Количество таблиц: 12
Количество изображений: 1

Похожие работы

Скачать
77618
6
3

... используются коэффициенты для пересчета почвенно-экологических индексов в баллы бонитетов по сельскохозяйственным культурам (Л.Л. Шишов, Д.Н. Дурманов, И.И. Карманов и др., 1991). Таблица 7 Бонитировка чернозема южного на склоне по показателям Пэи Почвы Пэи Баллы бонитета для культур зерновые кукуруза на силос однолетние травы Чернозем южный среднесуглинистый ...

Скачать
80695
18
0

... ячменя не сказывается на содержании этих элементов в почве. Таким образом, на почвах с повышенным содержанием подвижного фосфора и обменного калия применение минеральных удобрений под ячмень – высоко эффективный приём, обеспечивающий рост урожайности зерна на 15 - 69 %. При этом на первом месте по величине прибавок урожайности стоят азотные удобрения. Положительная роль фосфорных и калийных ...

Скачать
91742
5
1

... , осолоделые и оподзоленные), встречаются и такие (солонцы, солонцеватые почвы и солоди), для повышения, плодородия которых требуется мелиоративное вмешательство [5]. 5. Технология возделывания озимой ржи   5.1 Размещение культуры в севообороте Без удобрений во всех зонах Зауралья самую высокую урожайность озимой ржи обеспечивает чистый пар (таблица 2). В отдельные годы неплохую ее ...

Скачать
233983
16
28

... культур и пашни в хозяйстве, а спо­соб повышения эффективного плодородия почвы — интенсивностью применяемого комплекса агротехнических и мелиоративных ме­роприятий. По мере дальнейшей интенсификации земледелия, развития науки и техники совершенствуются и меняются системы земледе­лия от менее интенсивных к более интенсивным. Внутренней дви­жущей силой развития систем земледелия является ...

0 комментариев


Наверх