Геометрические свойства регулярного круглого конуса в пространстве

Асп. Коробова К. В.

Кафедра математического анализа.

Северо-Осетинский государственный университет

Приведены явные формулы для вычисления множеств положительных и отрицательных частей произвольного элемента в пространстве Геометрические свойства регулярного круглого конуса в пространстве, упорядоченном круглым регулярным конусом. Определено множество элементов, на котором реализуется минимум в формуле расстояния от элемента до конуса, и исследуется вопрос о совпадении этого множества с множеством положительных частей элемента.

Введение

Теория конусов является актуальным разделом функционального анализа и находит большое применение во многих областях математики. Геометрическим свойствам пространств, упорядоченных конусами различного вида, посвящены работы Л. В. Канторовича, Б. 3. Вулиха [1,2], М. А. Красносельского [3], В. Т. Худалова [4,5]. В работе автора [6] дано общее описание регулярного круглого конуса в пространстве Геометрические свойства регулярного круглого конуса в пространстве и описаны некоторые его свойства. Данная статья посвящена дальнейшему исследованию порядковых свойств пространства Геометрические свойства регулярного круглого конуса в пространстве.

1. Предварительные сведения

Приведем необходимые для дальнейшего использования определения и результаты.

1.1. Пусть Е – банахово пространство над полем действительных чисел R, Е+ – конус в Е. Конус Е+ называется регулярным, если выполнены следующие условия:

±х ≤ у Þ ||х|| ≤ ||y|| для любых х, у Î Е,

для любого х Î Е и любого e > 0 существует у Î Е+ такой, что ±х ≤ у и ||у|| ≤ (1+e) ||х||.

Регулярный конус Е+ называется строго регулярным, если выполнено условие (2) при e = 0, т. е.

(2') для любого х Î Е существует у Î Е+ такой, что ±х ≤ у и ||y|| = ||х||.

Упорядоченное замкнутым строго регулярным конусом Е+ пространство Е обозначают (Е, Е+) Î (Â), см. [1,2].

1.2. Одним из наиболее общих методов построения конуса в произвольном банаховом пространстве, обладающего свойствами нормальности, несплющенности, а также другими свойствами, является следующий: пусть X – банахово пространство, f Î X* – произвольный непрерывный линейный функционал на X такой, что ||f|| = 1. Для любого aÎ (0,1] определим K(f,α):={xÎX: f(x) ≥ a||х||}.

Если Н – гильбертово пространство над R, то для любого aÎН, ||a|| = 1, конус К(а, a) имеет вид:

K(a, α) = {x Î X : (a, x) ≥ a ||x||}.

Если dim H > 1, то для любого а Î Н, ||a|| = 1, конус К (а, a) строго регулярен в Н тогда и только тогда, когда a = Геометрические свойства регулярного круглого конуса в пространстве[5].

1.3. Отметим, что класс регулярных конусов в пространствах Геометрические свойства регулярного круглого конуса в пространстве и l1 совпадает с классом строго регулярных конусов [5]. Данная работа опирается на следующее описание всех регулярных круглых конусов, полученных в [4].

Теорема. Конус K(f, a) является регулярным Геометрические свойства регулярного круглого конуса в пространстве, n > l1 только при двух значениях a Î (0,1]:

при a = 1 каждая координата вектора f = (f1, f2,..., fn) равна +1 или – 1; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству Геометрические свойства регулярного круглого конуса в пространстве с естественным конусом положительных элементов;

при a = 0,5 одна из координат (j-я координата) вектора f = (f1, f2,..., fn) равна ±1, а все остальные – нули; при этом имеется 2n конусов, порождающих упорядоченные банаховы пространства, порядково изоморфные и линейно изометричные пространству Геометрические свойства регулярного круглого конуса в пространстве с конусом

Kj = {х = (x1,x2,...,xn) : xj ≥ Геометрические свойства регулярного круглого конуса в пространстве}. (1)

1.4. Пусть (Е, Е+) Î (Â). Для любого х Î Е обозначим через |Х| множество элементов у Î Е таких, что ± x ≤ у и ||x|| = ||y||. Любой элемент этого множества называется метрическим модулем элемента x.

Положим

X+ = ½ x + ½|X|, X− = −½ x + ½|X| .

Множества Х+ и Х− называются множествами положительных (соответственно отрицательных) частей элемента x. Если у Î |Х|, т.е. ±x ≤ у и ||у|| = ||x||, то положим x+ = (у + x)/2, x− = (у – x)/2, |x| = x+ + x−. Из определения следует, что |x| ≥ ± x, причем

x = x+ − x−, |x| = x+ + x−, ||x+ - x−|| = ||x+ + x−||, ||x|| = |||x|||.

1.5. Конус Е+ в упорядоченном банаховом пространстве (Е, Е+) Î (Â) называется достижимым, если для любого x Î Е существует элемент Рх Î Е+, на котором реализуется минимум в формуле расстояния от х до Е+, т. е.

d(x, E+) = inf{||а – x|| : a Î E+} = ||Рx – x||.

Множество всех таких Рх обозначается М(х).


Информация о работе «Геометрические свойства регулярного круглого конуса в пространстве»
Раздел: Математика
Количество знаков с пробелами: 14313
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
78329
0
0

... пространственно-временным миром. Найденное Эйнштейном объединение принципа относительности Галилея с относительностью одновременности получило название принципа относительности Эйнштейна. Понятие относительности стало одним из основных понятий в современном естествознании.   1.4 Общая теория относительности о пространстве и времени   Был этот мир глубокой тьмой окутан. Да будет свет! И вот ...

Скачать
460103
24
39

... ребрами) изображают конструктивные и потоковые функциональные структуры [14]. Принципы построения функциональных структур технических объектов рассматриваются в последующих главах курса "Основы проектирования им конструирования" не включенных в настоящее пособие. Для систем управления существуют характеристики, которые можно использовать в качестве критериев для оценки структур. Одна из них - ...

Скачать
90168
0
3

... , а затем и более фундаментального, одновременно и самого абстрактного (динамического) понимания симметрии. 2. 2.2.Симметрия кристаллов. Правильную, симметричную форму кристаллов издавна объясняли симметричным расположением атомов. Само существование атомов было еще гипотезой, но внешнее проявление стройного порядка заставляло предполагать внутреннюю причину. Быть может, правильные пирамиды, ...

Скачать
51525
1
6

... шланги. Их укладывают под растения так, чтобы вода попадала непосредственно на всю площадь корневой системы. "Зеленые комнаты" и лабиринты Еще один важный принцип планирования регулярных садов- разделение ландшафта на различные по оформлению "зеленые комнаты". Причем высокие живые изгороди позволяют создавать не только обособленные "комнаты", но и целые лабиринты. Кстати, в наше время, когда ...

0 комментариев


Наверх