Динамическое зондирование

6202
знака
0
таблиц
1
изображение

Специалистам, занимающимся инженерно-геологическими изысканиями, хорошо известно, что при бурении скважин отобрать образец песчаного грунта ненарушенного строения, особенно находящегося ниже уровня грунтовых вод, является сложной, трудоемкой, а иногда практически невыполнимой задачей.

Этим следует объяснить частое отсутствие в отчетах о выполненных инженерно-геологических изысканиях данных о плотности сложения пройденных скважинами песчаных грунтов. В большинстве случаев оценка плотности песков дается по косвенным показателям, например по характеру сопротивления песков внедрению буровых наконечников, что носит условный и, конечно, субъективный характер. Поэтому, располагая лишь данными о гранулометрического составе и некоторых других физических характеристиках песчаных грунтов, проектировщики лишены возможности оценивать плотность сложения песков и их механические свойства. Естественно, что такое положение не могло удовлетворить проектные и изыскательские организации и потребовало от них разработки способа оценки плотности песчаных грунтов в состоянии естественного залегания как при бурении скважины, так и без их бурения.

Второстепенная роль динамического зондирования в составе инженерно-геологических исследований отмечается и в зарубежной практике изысканий в ряде европейских стран, а также США и Канаде. Здесь необходимо отметить, что испытания грунтов динамическим зондированием за рубежом имеют меньшее применение, а их методика отличается от принятой в нашей стране. В то же время в определенных условиях испытания грунтов динамическим зондированием могут быть весьма эффективными, а в некоторых случаях и единственно пригодными для исследования условий залегания и свойств грунтов, например при исследовании плотности естественных и искусственно намытых песков, особенно когда они залегают ниже уровня грунтовых вод. Особенно остро необходимость оценки плотности сложения песчаных грунтов возникает при проектировании и строительстве гидротехнических сооружений (плотин, шлюзов, зданий ГЭС) в условиях равнинных рек.

Основной задачей, решаемой при испытаниях грунтов динамическим зондированием (при условии, что состав исследуемых грунтов по данным бурения не вызывает сомнения), является выявление в однородных по литологическому составу, главным образом песчаных, отложениях участков, отличающихся как более рыхлым, так и более плотным сложением. Простота опытов и быстрота их выполнения позволяют определять границы таких участков (оконтуривать участки) с достаточной степенью детализации.

Не менее важно при этих испытаниях определить положение границ, разделяющих литологические слои в многослойной толще. Не имея возможности располагать скважины близко одну от другой, часто на геологических разрезах такие границы показывают весьма условно. С помощью этого метода можно расчленить разрез пород на слои, отличающиеся сопротивлением динамической пенетрации с высокой точностью (до 0,05 м). Для этого часть точек зондирования располагают рядом со скважинами. Выполняя динамическое зондирование в промежутках между скважинами, по характеру погружения зонда определяют границы между слоями. Это в значительной степени способствует повышению надежности и достоверности результатов изысканий в тех случаях, когда по условиям строительства границы между слоями грунтов необходимо наносить на разрезы с высокой точностью (например, при проектировании свайных фундаментов).

Динамическое зондирование предназначено для исследования песчано-глинистых пород, содержащих не более 40% крупнообломочного материала, на глубину до 20 м.

Динамическое зондирование

Динамическое зондирование конусом заключается в забивке (ударами молота) в грунт зонда, представляющего собой колонну штанг и наконечник, падающего с фиксированной высоты. Диаметр основания конуса обычно больше диаметра штанг. В России чаще всего используют зонд со штангами диаметром 42 мм и коническим наконечником (угол раскрытия конуса 60o) диаметром 74 мм.

Глубину погружения (забивки) зонда S от определенного числа ударов (залога) и числа ударов n , затрачиваемых на интервал погружения зонда (обычно 10 см), принято называть показателями зондирования.

При забивке зонда фиксируют число ударов и глубину погружения зонда от одного залога, который устанавливают в зависимости от сопротивления грунта. Сопротивление, оказываемое грунтом зонду, называется динамическим сопротивлением пенетрации. Оно включает сопротивление грунта прониканию и силу трения по боковой поверхности зонда (между грунтом и штангами).

Динамическое сопротивление пенетрации выражают в виде относительной величины, числа стандартных ударов на 10 см погружения зонда,

Динамическое зондирование

В процессе зондирования, с увеличением глубины испытаний, увеличиваются масса зонда (навинчивание новых штанг) и трение по боковой поверхности зонда. Вследствие этого в величину N вносится поправка N1 = N · k , где N1 – исправленный показатель динамической пенетрации, k – коэффициент, учитывающий приращение массы зонда и трение между зондом и стенками зондировочной скважины.

Интенсивность динамического сопротивления пенетрации, т.е. сила, приходящаяся на единицу площади поперечного сечения зонда, называется удельным динамическим сопротивлением пенетрации (ω).

Динамическое зондирование

где P – вес молота,

Q – вес зонда,

Н – высота падения молота,

А – площадь поперечного сечения наконечника зонда,

F – трение по боковой поверхности зонда (учитывается при зондировании пластичных глинистых и водонасыщенных песчаных грунтов),

S – осадка от залога,

n – число ударов в залоге.

При небольшой глубине зондирования (до 7 м) и при отсутствии трения по боковой поверхности

Динамическое зондирование

Условное динамическое сопротивление подсчитывают по формуле:

Динамическое зондирование

где k – коэффициент учета потерь энергии при ударе молота,

А – удельная кинетическая энергия падающего молота,

Ф – коэффициент, учитывающий потери энергии на трение штанг о грунт.

Величины k , А, Ф определяют по таблице в зависимости от типа оборудования (легкое, основное, тяжелое), интервала глубины зондирования и типа грунтов (песчаные, глинистые).

Результаты динамического зондирования представляют в виде графиков: зависимости показателя зондирования N , ω, рд от глубины ξз . По показателям динамического зондирования можно определять приближенные значения показателей свойс


Информация о работе «Динамическое зондирование»
Раздел: География
Количество знаков с пробелами: 6202
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
26070
3
0

имости исследования определенной толщи горных пород как оснований зданий и сооружений. Предельная глубина зондирования не должна превышать 20-и. Область применения статического и динамического зондирования в зависимости от вида и физического состояния горных пород регламентируется данными, приведенными в табл.1. Таблица 1. Область применения статического и динамического зондирования по СН 448-72 ...

Скачать
64447
2
0

... разрушения горной породы или ее ослабления для последующего разрушения горной породы механическими способами. Квантовыми генераторами практически можно эффективно разрушать любую горную породу, придавая ей при обработке любую форму. Перспективен способ обработки камня высокоскоростной водяной струей, подаваемой под давлением более 10 МПа через сопло диаметром в несколько миллиметров. За счет ...

Скачать
23283
5
1

... решения задач по изучению свойств пород и инженерно-геологических процессов. В настоящее время происходит интенсивное развитие и внедрение геофизических методов в практику инженерно геологических изысканий и исследований. 3. Определение модуля деформации удельного сцепления и угла внутреннего трения в полевых условиях по результатам динамического зондирования   Динамическое зондирование ...

Скачать
32415
0
0

... нормативов. В последнее внемя он дополнен методами петрографического, минералогического, рентгено-структурного анализов. Д. В значительнйо мере формирование и изменения инженерно-геологических условий памятников определяются гидрогеологическими условиями. Их оценка связана, как правило, с изучением состава и параметров режима вод техногенных отложений в фундаментах сооружения, верховодки и ...

0 комментариев


Наверх