Ультразвук и измерения дальности

4567
знаков
0
таблиц
0
изображений

Ультразвук (УЗ) – упругие колебания и волны, частота которых превышает 15 – 20 кГц. Нижняя граница области УЗ-вых частот, отделяющая ее от области слышимого звука, определяется субъективными свойствами человеческого слуха и является условной, так как верхняя граница слухового восприятия – у каждого человека своя. Верхняя граница УЗ-вых частот обусловлена физической природой упругих волн, которые могут распространяться лишь в материальной среде, т.е. при условии, что длина волны значительно больше длины свободного пробега молекул в газе или межатомных расстояний в жидкостях и твердых телах. В газах при нормальном давлении верхняя граница частот УЗ составляет (109 Гц, в жидкостях и твердых телах граничная частота достигает 1012 – 1013 Гц. В зависимости от длины волны и частоты УЗ обладает различными специфическими особенностями излучения, приема, распространения и применения, поэтому область УЗ-вых частот подразделяют на три области: низкие УЗ-вые частоты (104 – 105 Гц); средние (105 – 107 Гц); высокие (107 – 109 Гц). Упругие волны с частотами 109 – 1013 Гц принято называть гиперзвуком.

На этапе разработки подобная подсистема отсутствовала, и управление ПР осуществлялось в ручном режиме с пульта ручного управления либо с помощью управляющей программы, осуществляющей управление манипулятором ПР по заранее заданной траектории. Отсутствие средств обратной связи с объектами манипулирования не даёт возможности контролировать прохождение технологического процесса (ТП) и соответственно реагировать на изменения, вносимые внешними воздействиями. Отсутствие обратной связи с выполняемыми операциями указывает на малую гибкость системы в целом, что значительно сокращает возможности применения ПР в реальных условиях автоматизированного производства. Непосредственная эксплуатация такой системы сталкивается со следующими проблемами:

необходимость создания жёсткой конвейерной структуры производственных участков;

решение задач временного согласования работы конвейера и ПР;

необходимость изменения управляющей программы при переходе на выпуск нового вида изделий, где сказывается сложность ввода траектории отработки технологической операции ПР.

Основным недостатком является жёсткое требование к точности задания эталонной траектории, нарушение которой в процессе работы ведёт к нарушению исполнения всего ТП, при этом такую ситуацию сложно автоматически скорректировать.

1.2 Задачи, решаемые подсистемой

Задачи, решаемые подсистемой, заключаются в обеспечении ПР информацией об объектах, подлежащих обработке, – обеспечение обратной связи ПР с внешней производственной средой. Из всех задач, которые должны решаться подобными системами следует выделить следующие:

идентификация изменений в рабочем пространстве ПР;

автоматическое определение признаков для эталонных объектов;

выделение требуемого объекта из множества объектов (распознавание), находящихся в рабочем пространстве ПР, по команде от системы управления (СУ);

расчёт (идентификация) и передача в СУ ПР пространственных характеристик объекта, для его последующей технологической обработки;

обеспечение постоянной обратной связи ПР с внешней производственной средой;

модификация базы данных эталонных объектов.

1.3 Характеристика объектов обработки

Система предназначена ориентации робота в пространстве при движении в естественной среде. Эта возможность обеспечивается при использовании достаточно большого количества независимых каналов измерения. Таким образом, речь идет о необходимости разработки многоканального ультразвукового дальномера, включенного в бортовую управляющую сеть робота.

Функциональные требования к подсистеме

Подсистема должна обеспечивать следующие функциональные возможности:

автоматизированная система учёта объектов роботизации:

1) добавление новых объектов в базу данных (БД);

2) изменение характеристик объектов базы данных;

3) удаление объектов из базы данных.

пакетный режим работы СУ ПР;

модульность подсистемы

При добавлении базы данных выбор общих характеристик (наименование, код, и т.п.) объекта возлагается на оператора. Параметры захвата объекта вводятся непосредственно из СУ ПР, и в данной подсистеме не используются, а только записываются как дополнительные параметры объекта. Изменение характеристик существующих в базе данных объектов производится только при помощи самой подсистемы, оператор не имеет право менять эти параметры вручную.

Подсистема обеспечивает обновления методов обработки зрительной информации за счёт объектно-ориентированной структуры программного комплекса – перекомпоновка без изменения базовых объектов программного комплек


Информация о работе «Ультразвук и измерения дальности»
Раздел: Математика
Количество знаков с пробелами: 4567
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
116334
8
11

... в корпусе датчика (9). С задней стороны корпуса прикручивается крышка (10) с разъемом (11) SKINTOP MS, через который проходит сигнальный кабель (12) для соединения датчика с прибором для измерения скорости кровотока. Для уменьшения потери энергии ультразвукового колебания при излучении в исследуемую среду используется промежуточная среда, заполненная акустически прозрачной жидкостью (13), в ...

Скачать
49272
0
0

... Dt, значения которой лежат в наносекундном диапазоне; поэтому для достижения адекватной стабильности необходимо сложное электронное оборудование. На рис. 5(б) представлен более простой вариант ультразвукового датчика потока на принципе измерения времени прохождения сигнала, используемой в некоторых промышленных системах. При подстановке в выражение (1.15) =0 получаем Dt=2Du/c. Скорость звука c ...

Скачать
41535
7
8

... 036 (3,006) 5,0 mV/V/mmHg ± 1,5 ± 9,0mV/°C 6 1 330 Ω * - Датчики, не рекомендованные для дальнейшего использования Диапазон рабочих температур всех медицинских датчиков +15°С ...+45°С Таблица 3.3 – Некоторые датчики давления фирмы MOTOROLA Device Series Max Pressure Rating Over Pressure (kPa) Offset mV (Typ) Full Scale (mV/kPa) Sensitivity (mV/kPa) Linearity % of FSS ...

Скачать
297514
1
0

... механических факторов. Классификация) средства коллективной защиты разделяются на устройства: оградительные, предохранительные, тормозные, автоматического контроля и сигнализации, дистанционного управления и знаки безопасности. 267. Оградительные устройства. Оградительные устройства подразделяются: по конструкции на: кожухи, дверцы, козырьки, планки, барьеры и экраны; по способу ...

0 комментариев


Наверх