Дифференциальные уравнения гиперболического типа

14726
знаков
0
таблиц
7
изображений

Курсовая работа студента гр. МТ-31 Нургалиев А.

Инновационный евразийский университет

Павлодар 2007 год.

1. Введение.

Многие задачи математической физике приводят к дифференциальным уравнениям с частными производными. В настоящей курсовой работе рассмотрены одни из основных уравнений гиперболического типа: 4-го и наиболее часто встречающегося 2-го порядка.

Рассмотрено простейшее уравнение гиперболического типа – волновое уравнение. К исследованию этого уравнения приводят рассмотрение процессов поперечных колебаний струны, продольных колебаний стержня, электрических колебаний в проводе, крутильных колебаний вала, колебаний газа и т. д. Приведена формула Даламбера для решения краевых задач, а также её физическая интерпретация.

Большое число задач о колебаниях стержней, пластин и т.д. приводит к уравнениям более высокого порядка. В качестве примера на уравнения 4-го порядка рассмотрена задача о собственных колебаниях камертона.

2. Метод распространяющихся волн.

2.1. Вывод уравнения колебаний струны.

В математической физике под струной понимают гибкую, упругую нить. Напряжения, возникающие в струне в любой момент времени направлены по касательной к ее профилю. Пусть струна длины l в начальный момент направлена по отрезку оси 0x от 0 до l. Предположим, что концы струны закреплены в точках x=0 и x=l. Если струну отклонить от ее первоначального положения, а потом предоставить самой себе или, не отклоняя струны, придать в начальный момент ее точкам некоторую скорость, или отклонить струну и придать ее точкам некоторую скорость, то точки струны будут совершать движения – говорят, струна начнет колебаться. Задача заключается в определении формы струны в любой момент времени и определении закона движения каждой точки струны в зависимости от времени.

Будем рассматривать малые отклонения точек струны от начального положения. В силу этого можно предполагать, что движение точек струны происходит перпендикулярно оси 0x и в одной плоскости. При этом предположении процесс колебания струны описывается одной функцией u(x,t) которая дает величину перемещения точки струны с абсциссой x в момент t.

Дифференциальные уравнения гиперболического типа

Так как мы рассматриваем малые отклонения точек струны в плоскости (x,u), то будем предполагать, что длина элемента струны M1M2 равняется ее проекции на ось 0x, т.е. M1M2=x2-x1. Также будем предполагать, что натяжение во всех точках струны одинаковое; обозначим его через T.

Рассмотрим элемент струны MM’.

Дифференциальные уравнения гиперболического типа

На концах этого элемента, по касательным к струне, действуют силы T. Пусть касательные образуют осью 0x углы Дифференциальные уравнения гиперболического типа и Дифференциальные уравнения гиперболического типа. Тогда проекция на ось 0u сил, действующих на элемент MM’, будет равна Дифференциальные уравнения гиперболического типа. Так как угол Дифференциальные уравнения гиперболического типа мал, то можно положить Дифференциальные уравнения гиперболического типа, и мы будем иметь:

Дифференциальные уравнения гиперболического типа

(здесь мы применили теорему Лагранжа к выражению, стоящему в квадратных скобках).

Чтобы получить уравнение движения, нужно внешние силы, приложенные к элементу, приравнять силе инерции. Пусть масса элемента струны будет Дифференциальные уравнения гиперболического типа. Ускорение элемента равно Дифференциальные уравнения гиперболического типа. Следовательно, по принципу Даламбера будем иметь:

Дифференциальные уравнения гиперболического типа

Сокращая на Дифференциальные уравнения гиперболического типа и обозначая Дифференциальные уравнения гиперболического типа, получаем уравнение движения

Дифференциальные уравнения гиперболического типа (1)

Это и есть волновое уравнение – уравнение колебания струны. Для полного определения движения струны одного уравнения (1) недостаточно. Искомая функция u(x,t) должна удовлетворять еще граничным условия, указывающим, что делается на концах струны (x=0 и x=l), и начальным условиям, описывающим состояние струны в начальный момент (t=0). Совокупность граничных и начальных условий называется краевыми условиями:

Дифференциальные уравнения гиперболического типа


Информация о работе «Дифференциальные уравнения гиперболического типа»
Раздел: Математика
Количество знаков с пробелами: 14726
Количество таблиц: 0
Количество изображений: 7

Похожие работы

Скачать
34911
1
21

... коэффициенты an (x1), bn (x1), an (x2), bn (x2) при помощи гармонического анализа, можно определить коэффициент температуропроводности стержня а2. Глава 3. МОДЕЛИРОВАНИЕ С ПОМОЩЬЮ ДИФФЕРЕНЦИАЛЬНЫХ УРАВНЕНИЙ В ЧАСТНЫХ ПРОИЗВОДНЫХ. §3.1. Дифракция излучения на сферической частице.   Перейдем теперь к рассмотрению задачи о дифракции электромагнитных волн на сферической частице. Как известно, в ...

Скачать
37000
0
12

... менять саму их постановку, вводя в нее дополнительную априорную информацию о строении решения.   2. Классификация уравнений гиперболического типа в контексте классификации уравнений математической физики Уравнения математической физики, дифференциальные уравнения с частными производными, а также некоторые родственные уравнения иных типов (интегральные, интегро-дифференциальные ...

Скачать
18312
11
0

... Дис-петчер  1.1  3 Рис. 5. HIPO-диаграмма.   Задание к лабораторной работе   С помощью HIPO-технологии составить внешние спецификации для комплекса программ решения одной из следующих задач. 1.Численное решение задачи Коши для дифференциального уравнения ме­тодом Рунге-Кутта и Адамса с автоматическим выбором шага и заданным шагом. 2.Интерполирование табличной функции. 3.Численное ...

Скачать
32343
0
0

... была построена теория вложения функциональных пространств, которые в настоящее время носят название пространств Соболева. А.Н. Тихоновым была построена теория некорректных задач. Выдающийся вклад в современную теорию дифференциальных уравнений внесли российские математики Н.Н. Боголюбов, А.Н. Колмогоров, И.Г. Петровский, Л.С. Понтрягин, С.Л. Соболев, А.Н. Тихонов и другие. Влияние на развитие ...

0 комментариев


Наверх