Магнитные свойства горных пород

7825
знаков
0
таблиц
0
изображений

В. В. Орлёнок, доктор геолого-минералогических наук

Все горные породы, слагающие земную кору, по магнитным свойствам подразделяются на диамагнетики, парамагнетики и ферромагнетики. В свою очередь магнитные свойства диа-, пара- и ферромагнетиков определяются величиной магнитной восприимчивости c и остаточной намагниченностью In.

Магнитная восприимчивость характеризует способность пород намагничиваться под действием внешнего магнитного поля Ii. Она определяется из соотношения

c = Ii/H, (VI.30)

где Ii – интенсивность намагничивания. Остаточная намагниченность представляет как бы законсервированное магнитное поле прошлых геологических эпох, т.е. характеризует намагниченность пород, приобретенную ими в момент формирования.

Собственно намагниченностью I называется векторная величина, равная магнитному моменту единицы объема тела.

Величина

В = Н + 4pI (VI.31)

называется магнитной индукцией и характеризует плотность магнитного потока, проходящего через поперечное сечение намагниченного тела. В системе СГС единицей магнитной индукции является гаусс, в системе СИ – тесла. Из выражения (VI.30), заменяя I=cН и подставляя его в (VI.31), получим

1 + 4pc = В/Н = m. (VI.32)

Величина m называется магнитной проницаемостью. В системе СИ она измеряется в генри/м.

Диамагнетики являются практически немагнитными породами. Коэффициент магнитной восприимчивости c для них отрицательный (c<0) и обычно имеет порядок 10-7 – 10-6 ед. СГС. К диамагнетикам относится небольшое количество пород, например каменная соль, гипс, кварц, кальцит.

Парамагнетики имеют невысокую положительную магнитную восприимчивость c (c > 0, порядка 10-6 ед. СГС). Парамагнитными свойствами обладает большинство горных пород и минералов, например почти все осадочные породы (известняки, доломиты, песчаники, глины), многие метаморфические и магматические породы (граниты, гнейсы, роговики и др.). Магнитная восприимчивость диамагнитных и парамагнитных пород не меняется при очень широких изменениях магнитного поля Н – от 0 до 104 эрстед. Кроме того, парамагнитные вещества не обладают самопроизвольной намагниченностью. В отсутствие внешнего поля их магнитный момент равен нулю. При наличии поля атомные магнитные моменты парамагнетиков ориентируются в направлении силовых линий поля.

Ферромагнетики характеризуются высокими положительными значениями c, доходящими до целых единиц СГС (c = 105 ед. СГС). Ферромагнитных минералов немного. Важнейшими из них являются магнетит (Fe3О4), титаномагнетит (Fе2ТiO4), гематит (Fе3О4), ильменит (FеТiO3), пирротин (FеS).

В отличие от диа- и парамагнетиков ферромагнитные минералы обладают свойством сохранять остаточную намагниченность. Поэтому их суммарная намагниченность складывается из остаточной намагниченности In и индуцированной внешним магнитным полем Н намагниченности Ii:

I = cH + In (VI.33)

т.е. их магнитный момент определяется соотношением

М = (cН + In)V,

где V – объем образца.

Намагниченность диа- и парамагнетиков определяется лишь первым членом уравнения (VI.33):

I i = cH; M = cHV, (VI.34)

ибо эти последние не обладают свойством сохранять остаточную намагниченность.

Магнитные свойства горных пород обусловлены содержанием ферромагнитных минералов. Эти минералы обычно рассеяны в виде мелких зерен в общей диа-парамагнитной массе, составляющей основной объем породы. Количество рассеянных (акцессорных) минералов и определяет магнитную восприимчивость c и остаточную намагниченность In горных пород.

Свойство некоторых горных пород длительное время сохранять остаточную намагниченность явилось основой для развития палеомагнитных методов исследования горных пород, позволяющих получать ценные сведения о структуре геомагнитных полей прошлых геологических эпох.

Намагниченность горных пород зависит от целого ряда факторов и, в частности, от величины напряженности магнитного поля, температуры, давления, химических изменений, времени, механических деформаций и др. Наибольший интерес для палеомагнетизма представляет намагниченность, которую приобретает горная порода при остывании в земном магнитном поле, а также при химических изменениях, например при образовании гематита. Последний, как известно, образуется при окислении магнетита. Намагниченность, приобретаемая породой, в первом случае называется термоостаточной (ТРМ), во втором – химической остаточной намагниченностью (ХОН). Термическая и химическая остаточные намагниченности являются наиболее стабильными видами намагниченности. Однако наряду с ними горные породы претерпевают и другие виды намагниченности.

Приобретаемая при этом намагниченность называется вторичной остаточной намагниченностью. Вторичную остаточную намагниченность, т.е. дополнительное изменение первично индуцированной величины и направления вектора напряженности Н, горная порода приобретает в результате последующего умеренного разогрева (например, при метаморфизме) или механической деформации (при тектонических нарушениях, дислокациях, метаморфизме и т.д.), химических изменениях, а также при общем размагничивании в ходе времени или под влиянием переменных магнитных полей локального происхождения.

Намагниченность горных пород постепенно уменьшается с увеличением температуры и становится равной нулю в точке Кюри (порядка 6000С). Точка Кюри для различных ферромагнетиков различна. Например, для магнетита она равна 578°С, гематита – 675° С, ильменита – 100 – 150° С, пирротина – 300 – 325° С.

Поскольку вторичная остаточная намагниченность, накладываясь на первичную остаточную намагниченность, затрудняет получение истинных значений In и c, образцы в процессе палеомагнитных измерений подвергают так называемой магнитной или термической чистке. Сущность магнитной чистки пород заключается в том, что образец подвергают размагничиванию в плавно меняющемся переменном магнитном поле, в результате чего нестабильная вторичная остаточная намагниченность удаляется, а более стабильная первичная остаточная намагниченность сохраняется как бы в чистом виде. Размагничивание производится в пространстве, изолированном от влияния геомагнитного поля Земли, для чего обычно используются кольца Гельмгольца.

Сущность термической чистки заключается в том, что образец нагревают до температуры несколько ниже точки Кюри и затем охлаждают. Цикл «нагревание – охлаждение» повторяют несколько раз, контролируя при этом изменение магнитной восприимчивости c. Последнее необходимо для исключения из опытов образцов, в которых в результате нагрева произошли необратимые химические и структурные изменения. Наличие этих изменений обычно контролируется по колебаниям c (20 % от первоначального значения).

Отношение In/Ii = Q называется числом или фактором Кенигсбергера. Величина Q меняется от 1 до 100 и более единиц. Это свидетельствует о том, что локальные остаточные магнитные аномалии, наблюдаемые на поверхности Земли, обусловлены в большинстве случаев величиной In, а не Ii. Для термоостаточной намагниченности фактор Q, как правило, больше единицы. В то же время для нормальной намагниченности (например, осадочных пород) он составляет десятые, сотые доли единицы (Белоконь и др., 1973). С другой стороны, фактор Q до некоторой степени исключает влияние концентрации акцессорных, что позволяет сравнивать магнитные свойства различных пород. При наличии большого количества определений Q в разновозрастных толщах пород (порядка 100 и более) фактор Q может характеризовать релаксационный спад первичной намагниченности пород (рис. 39) и тем самым их относительный возраст.

Промежуток времени, в течение которого магматические, метаморфические и осадочные породы приобретают тот или иной вид намагниченности, зависит от скорости остывания магм или скорости седиментации и диагенеза. Он может меняться в пределах от нескольких часов до десятков и тысяч лет. Следовательно, в одной и той же толще магматических или осадочных пород вектор In будет меняться по разр


Информация о работе «Магнитные свойства горных пород»
Раздел: География
Количество знаков с пробелами: 7825
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
74345
2
0

... углекислоту, SO4-2 и, возможно, BO3-3; в катионной части растворов преобладают K+ и Na+. Максимальные метасоматические изменения происходят в приповерхностных зонах, где благодаря высокой пористости и трещиноватости обеспечивается относительно свободная циркуляция кислорода, а горные породы обогащены вадозными водами, которые и производят интенсивное кислотное выщелачивание. Под воздействием ...

Скачать
22922
2
3

... 66 ± 6 27 8 Заполнение жилищ 132 10 – 340 74 ± 6 34 9 Заполнение ям 43 20 – 141 51 ± 6 17 10 Вмещающие породы 180 7 – 209 25 ± 2 12 Таблица 1. Статистические характеристики магнитных свойств археологических объектов Значения стандарта s количественно характеризуют степень дисперсии (рассеяния) исследуемых параметров, которая по ряду объектов оказалась довольно высокой, что ...

Скачать
40635
1
1

... процессов). Привести схему ступенчатого сброса и взброса. Показать зависимость силы землетрясения от геоморфологического строения участка, состава и обводиенности пород 1.  Описание сущности процессов внутренней динамики земли (эндогенных процессов). Эндогенными (внутренними) процессами называются такие геологические процессы, происхождение которых связано с глубокими недрами Земли. Вещество ...

Скачать
53251
5
2

... в районах, подверженных данным процессам; – инженерно–геологическое значение этих процессов, мероприятия, устраняющие их вредное влияние на условия строительства и эксплуатации сооружений. Гравитационные процессы на склонах Горные породы, слагающие склоны, очень часто находятся в неустойчивом положении. При определенных условиях и под влиянием гравитации они начинают смещаться вниз по склонам ...

0 комментариев


Наверх