Пример решения задачи по разделу «Переходные процессы»

3777
знаков
1
таблица
4
изображения

Задача. Дана электрическая цепь, в которой происходит коммутация (Рис. 1). В цепи действует постоянная ЭДС Е. Требуется определить закон изменения во времени токов и напряжений после коммутации в ветвях схемы.

Задачу следует решить двумя методами: классическим и операторным. На основании полученного аналитического выражения построить график изменения искомой величины в функции времени в интервале от t = 0 до t = , где – меньший по модулю корень характеристического уравнения.

Параметры цепи: R1 = 15 Ом; R2 = 10 Ом; С = 10 мкФ; L = 10 мГ; Е = 100 В.

Решение.

Классический метод.

Решение задачи получается в виде суммы принужденного и свободного параметра:

i(t) = iпр(t) + iсв(t); u(t) = uпр(t)+ uсв(t), (1)

где , а .

1. Находим токи и напряжения докоммутационного режима для момента времени t = (0–). Так как сопротивление индуктивности постоянному току равно нулю, а емкости – бесконечности, то расчетная схема будет выглядеть так, как это изображено на рис. 2. Индуктивность закорочена, ветвь с емкостью исключена. Так как в схеме только одна ветвь, то ток i1(0–) равен току i3(0–), ток i2(0–) равен нулю, и в схеме всего один контур.

Составляем уравнение по второму закону Кирхгофа для этого контура:

,

откуда

 = 4 А.

Напряжение на емкости равно нулю [uC(0–) = 0].

2. Определим токи и напряжения непосредственно после коммутации для момента времени t = 0+. Расчетная схема приведена на рис. 3. По первому закону коммутации iL(0–) = iL(0+), т.е. ток i3(0+) = 4 А. По второму закону коммутации uC(0–) = uC(0+) = 0.

Для контура, образованного ЭДС Е, сопротивлением R2 и емкостью С, согласно второго закона Кирхгофа имеем:

или

;

i1(0+) = i2(0+) + i3(0+) = 14 А.

Напряжение на сопротивлении R2 равно Е – uC(0+) = 100 В, напряжение на индуктивности равно напряжению на емкости.

3. Рассчитываем принужденные составляющие токов и напряжений для . Как и для докоммутационного режима индуктивность закорачивается, ветвь с емкостью исключается. Схема приведена на рис. 4. и аналогична схеме для расчета параметров докоммутационого режима.

 = 10 А;

 = 100 В; ;

4. Определяем свободные составляющие токов и напряжений для момента времени t = 0+, исходя из выражений i(0+) = iпр(0+) + iсв(0+) и u(0+) = uпр(0+) + uсв(0+).

iсв1(0+) = 4 А; iсв2(0+) = 10 А; iсв3(0+) = –6 А; uсвL(0+) = uсвС(0+) = 0; .

5. Определяем производные свободных токов и напряжений в момент времени непосредственно после коммутации (t = 0+), для чего составим систему уравнений, используя законы Кирхгофа для схемы, изображенной на рис. 3, положив Е = 0.

;

(2)

Производную тока через индуктивность можно найти, используя выражение: , а производную напряжения на емкости – из уравнения . Т.е.

и ,

откуда

;  (3)

Подставляя (3) в (2), после решения получаем:

; ; ;

Все полученные результаты заносим в таблицу.

i1

i2

i3

uL

uC

uR2

t = 0+ 14 10 4 0 0 100

10 0 10 0 0 100

4 10 –6 0 0 0

–105

–105

0

106

106

–106

6. Составляем характеристическое уравнение. Для этого исключим в послекоммутационной схеме источник ЭДС, разорвем любую ветвь и относительно разрыва запишем входное сопротивление для синусоидального тока . Например, разорвем ветвь с сопротивлением R2:

.

Заменим j на р и приравняем полученное уравнение нулю. Получим:

или

R2CLp2 + pL + R2 = 0.

Откуда находим корни р1 и р2.

р1 = –1127, р2 = –8873.

7. Определим постоянные интегрирования А1 иА2. Для чего составим систему уравнений:

;  

или

;

Например, определим постоянные интегрирования для тока i1 и напряжения uL. Для тока i1 уравнения запишутся в следующем виде:

4 = А1i + А2i;

.

После решения: А1i = –8,328 А, А2i = 12,328 А.

для напряжения uL:

;  

.

После решения: = 129,1 В, = –129,1 В.

8. Ток i1 cогласно (1) изменяется во времени по закону:

i1(t) = 10 – 8,328е–1127t + 12,328e–8873t,

а напряжение uL:

uL(t) = 129,1e–1127t – 129,1 e–8873t.


Информация о работе «Пример решения задачи по разделу «Переходные процессы»»
Раздел: Математика
Количество знаков с пробелами: 3777
Количество таблиц: 1
Количество изображений: 4

Похожие работы

Скачать
3826
1
0

скомой величины в функции времени в интервале от t = 0 до t = , где – меньший по модулю корень характеристического уравнения. Параметры цепи: R1 = 15 Ом; R2 = 10 Ом; С = 10 мкФ; L = 10 мГ; Е = 100 В. Решение. Классический метод. Решение задачи получается в виде суммы принужденного и свободного параметра: i(t) = iпр(t) + iсв(t); u(t) = uпр(t)+ uсв(t), (1) где , а . 1. ...

Скачать
78281
2
8

... на одном или нескольких рабочих местах, удлинением поточных линий, применением механизированных групповых и типовых процессов. Пропорциональность производственных процессов должна восстанавливаться все время при последовательном их совершенствовании, связанном с повышением уровня механизации и автоматизации. При этом повышение пропорциональности должно достигаться на основе все более высокой ...

Скачать
132892
115
214

... влияния неодновременного включения блоков конденсаторных батарей. При этом рассматривался процесс обжима трубчатых заготовок из алюминиевого сплава АМг2М диаметром 27 мм, 57 мм, 87 мм и толщиной 1,2 мм одновитковым, четырехвитковым цилиндрическим, индуктором-концентратором. Рассматривалось пять типов магнитно-импульсных установок основные характеристики, которых приведены в табл.5.1. Таблица ...

Скачать
51477
0
0

... не менее пяти циклов разряд – заряд глубиной 250 Кл/см2. Основные результаты и выводы Настоящая работа обобщает результаты комплексного исследования механизма и кинетики электродных процессов в ионной и электронной подсистемах в низкотемпературных твердых электролитах с использованием импульсных методов. Важнейшим результатом работы является получение новых и уточнение полученных другими исс

0 комментариев


Наверх