300 тыс. руб.

Продолжая обратный процесс, находим x*2= 2 (700 - x*4 - x*3) = 2

(300) = 100 тыс. руб.

На долю первого предприятия остается x*1 = 700 - x*4 - x*3 - x*2 = 200 тыс.

руб.

Таким образом, наилучшим являетсяследующее распределение капитальных вложений по

предприятиям:

x*1 =200; x*2 =100; x*3 = 300; x*4 = 100.

Оно обеспечивает производственномуобъединению наибольший воможный прирост

прибыли 89 тыс. руб.

выполнение равенства: f1(x*1) + f2(x*2) + f3(x*3) + f4(x*4) = zmax

24+18+37+10=89

ДИНАМИЧЕСКАЯ ЗАДАЧА УПРАВЛЕНИЯПРОИЗВОДСТВОМ И ЗАПАСАМИ

Рассмотрим трехэтапную систему управлениязапасами с дискретной продукцией и

динамическим детерминированным спросом.

Пусть спрос (заявки) потребителей на нашупродукцию составляют: на первый этап

d1=3 единицы, на второй – d2=2, на третий - d3=3 единицы. К началу первого

этапа на складе имеется 3 единицыпродукции, т.е. начальный уровень запаса равен

y1=3. Затраты на хранениеединицы продукции на разных этапах различны и

составляют соответственно h1=4, h2=3, h3=2. Затраты на производство xjединиц

продукции на j-м этапе определяются функцией jj(xj) = xj2 + 2xj + 2

т.е. а=1; b=5; с=2. Требуется указать,сколько единиц продукции на отдельных

этапах следует производить, чтобы заявкипотребителей были удовлетворены, а наши

общие затраты на производство ихранение за все три этапа были наименьшими.

Исходные данные задачи можно краткозаписать одной строкой:

d1 d2 d3 a b c

h1 h2 h3 y1

3 2 3 1 2 2

 4 3 2 3

Воспользовавшись рекуррентнымисоотношениями, последовательно вычисляем F1 (x =

y2), F2 (x = y3),..., Fk (x = yk+1), ... и соответственно находим 1

(x= y2), 2 (x = y3 ), ..., ` k (x = yk+1), ...

Положим k = 1.

Параметр состояния x = у2 может приниматьцелые значения на отрезке

0 у2 d2 + d3 0 y2 2 + 3 т.е. у2 = 0, 1, 2, 3, 4, 5.

Каждому значению параметра состояниядолжна отвечать определенная область

изменения переменной x1, характеризуемаяусловием 0 х1 d1 + у2 или 0 х1 3

+ у2

Из балансового уравнения х1 + у1 - d1 = у2 непосредственно следует, что объем

производства связан созначением параметра состояния x= у2соотношением

x1= y2 + d1 - y1 = y2 + 3 - 3 = y2

В этом и состоит особенность первого этапа.Если задан уровень запаса к

началупервого этапа, то каждому значению у2 отвечает единственное значение х1

ипотому F1(x = y2) = W1 (x1, y2)

Придавая у2 различные целые значения от 0до 6 и учитывая предыдущее соотношение,

находим

y2 = 0, x1= 0, W1 (0;0) = 02 + 2×0 + 2 +4×0 = 2*

y2 = 1, x1= 1, W1 (1;1) = 12 + 2×2 + 2 +4×1 = 11

y2 = 2, x1= 2, W1 (2;2) = 22 + 2×2 + 2 +4×2 = 18

y2 = 3, x1= 3, W1 (3;3) = 32 + 2×3 + 2 +4×3 = 29

y2 = 4, x1= 4, W1 (4;4) = 42 + 2×4 + 2 +4×4 = 42

y2 = 5, x1= 5, W1 (5;5) = 52 + 2×5 + 2 +4×5 = 57

Значения функции состояния F1(x )представлены в табл. 1

Таблица 1

x = y2 0 1 2 3 4 5

F1 (x = y2)

2 11 18 29 42 57

x1(x=y2)  0 1 2 3 4 5

Переходим ко второму этапу. Полагаем k =2 и табулируем функцию F2(x = y3)

Здесь минимум берется по единственнойпеременной х2, которая может изменяться в

пределах

0 £ x2 £ d2 + y3 или 0 £ x2 £ 2 + y3

(1)

где верхняя граница зависит от параметрасостояния x = у3, который

принимаетзначения на отрезке

0 £ y3 £ d3 , т.е. 0 £ y3 £ 3

а аргумент у2 связан с х2 и у3 балансовымуравнением x2 + y2 - d2 = y3

откуда следует y2 = y3 + d2 - x2 = =y3 +2 - x2 (2)

Придавая параметру состояния различныезначения от 0 до 3, будем последовательно

вычислять W2 (x2, x), а затем определять F2(x ) и 2(x ).

Положим x = у3 = 0. Тогда, согласно(1), 0 £ x2 £ 2, т.е.переменная х2 может

принимать значения: 0, 1, 2, а каждому значению х2 отвечаетопределенное значение

у2, вычисляемое по формуле (2): у2 = 2 - х2

Последовательно находим:

если x2 = 0, то у2 = 2 , W2 (0,2) = 02 + 2×0 + 2+

F1(2) = 2 + 18 = 20,

x2 = 1, y2 = 2 - 1 = 1, W2 (1,2) = 12 + 5×1 + 2 + F1(1) = 8 +

11 = 19,

x2 = 2, y2 = 2 - 2 =0, W2(2,2) = 22 + 5×2 + 2 + F1(0) = 16+ 2 = 18*,

Наименьшее из полученных значений W2 есть F2 (0), т.е.

F2(x = y3 = 0) = 18,

причем минимум достигается при значениих2, равном ` 2 (x = y3 = 0) = 2

Положим x = у3 = 1. Тогда, согласно(1), 0 £ x2 £ 3, т.е.переменная х2 может

принимать значения: 0, 1, 2, 3, а каждому значению х2отвечает определенное

значение у2, вычисляемое по формуле (2): у2 = 3 - х2

Последовательно находим:

если x2 = 0, то y2 = 3-0 = 3, W2 (0,1) = 02 + 2×0 + 2 + 3×1 + F1(3) = 5+

29 = 34,

x2 = 1, y2 = 3-1 = 2, W2 (1,2) = 12 + 2×1 + 2 + 3×1 +F1(2) = 8 + 18 = 26,

x2 = 2, y2 = 3-2 = 1, W2(2,1) = 22 + 2×2 + 2 + 3×1 + F1(1) = 13 +11 =

24,

x2 = 3, y2 = 3-3 = 0, W2 (3,1) = 32 + 2×3 + 2 + 3×1 +F1(0) = 20 + 2 =

22*,

Наименьшее из полученных значений W2 есть F2 (1), т.е.

F2(x = y3 = 1) = min W2 (x2,1) = 22,

причем минимум достигается при значениих2, равном ` 2 (x = y3 = 1) = 3

Положим x = у3 = 2. Тогда, согласно(1), 0 £ x2 £ 4, т.е.переменная х2 может

принимать значения: 0, 1, 2, 3, 4, а каждому значению х2отвечает определенное

значение у2, вычисляемое по формуле (2): у2 = 4 - х2

если x2 = 0, то y2 = 4-0 = 4, W2 (0,2) = 02 + 2×0 + 2 + 3×2 + F1(4) = 8+

42 = 50,

x2 = 1, y2 = 4-1 = 3, W2 (1,2) = 12 + 2×1 + 2 + 3×2 +F1(3) = 11 + 29 =

40,

x2 = 2, y2 = 4-2 =2, W2(2,2) = 22 + 2×2 + 2 + 3×2 + F1(2) = 16 + 18 =

34,

x2 = 3, y2 = 4-3 = 1, W2 (3,2) = 32 + 2×3 + 2 + 3×2 +F1(1) = 23 + 11 =

34*,

x2 = 4, y2 = 4-4 = 0, W2(4,2) = 42 + 2×4 + 2 + 3×2 + F1(0) = 32 + 2 =

40.

Наименьшее из полученных значений W2 есть F2 (2), т.е.

F2 (x = y3 = 2) = min W2 (x2,2) = min (64,55, 50, 49, 52) = 49,

x2

причем минимум достигается при значениих2, равном ` 2 (x = y3 = 2) = 3

Положим x = у3 = 3. Тогда, согласно(1), 0 £ x2 £ 5, т.е.переменная х2 может

принимать значения: 0, 1, 2, 3, 4, 5, а каждому значению х2отвечает определенное

значение у2, вычисляемое по формуле (2): у2 = 5 - х2

если x2 = 0, то y2 = 5-0 = 5, W2 (0,3) = 02 + 2×0 + 2 + 3×3 + F1(5) = 11+

57 = 68,

x2 = 1, y2 = 5-1 = 4, W2 (1,3) = 12 + 2×1 + 2 + 3×3 +F1(4) = 14 + 42 =

56,

x2 = 2, y2 = 5-2 = 3, W2(2,3) = 22 + 2×2 + 2 + 3×3 + F1(3) = 19 + 29 =

48,

x2 = 3, y2 = 5-3 = 2, W2 (3,3) = 32 + 2×3 + 2 + 3×3 +F1(2) = 26 + 18 =

44*,

x2 = 4, y2 = 5-4 = 1, W2(4,3) = 42 + 2×4 + 2 + 3×3 + F1(1) = 35 + 11 =

46.

x2 = 5, y2 = 5-4 = 0, W2(5,3) = 52 + 2×5 + 2 + 3×3 + F1(0) = 46 + 2 =

48.

Наименьшее из полученных значений W2 есть F2 (3), т.е.

F2(x = y3 = 3) = min W2 (x2,3) = 44,

причем минимум достигается при значениих2, равном ` 2 (x = y3 = 3) = 3

Результаты табулирования функции F2 (x =y3)сведены в табл. 2.

 

Таблица2

x= у3 0 1 2 3

F2 (x= y3) 18 22 34 44

 (x= y3)

2 3 2 или 3 3

 

Переходим к следующему этапу. Полагаемk=3 и табулируем функцию F3 (x = y4):

 

Вычисляем значение функции состояниятолько для одного значения аргумента x = у4

= 0, так как не хотим оставлятьпродукцию в запас в конце исследуемого периода.

0£y4£0; x=y4; 0 £ x3 £ d3 + y4 → 0 £ x3 £ 3; y3 = y4 + d3-x3= y4+3- x3;

W3(x3, y4) = a + bx3 + c + h3y4 + F2(y3)= +2 x3+2 + 2 y4 + F2(y3)

x3=0 y3=3 W3(0;0)=02 + 2×0 +2 +2×0 +F2(3)=2

+44=46

x3=1 y3=2 W3(1;0)=12 + 2×1 +2+2×0 + F2(2)=5

+34=39

x3=2 y3=1 W3(2;0)=22 + 2×2 +2+2×0 +

F2(1)=10+22=32*

x3=3 y3=0 W3(3;0)=32 + 2×3 +2+2×0 +F2(0)=17

+18=35

Получаем F3 (x = y4) = min W3 (x3,0) =32, причем минимум достигается при ` 3(x

= y4 = 0) = 2.

Таким образом, мы получили не толькоминимальные общие затраты на производство и

хранение продукции, но и последнююкомпоненту оптимального решения. Она равна =

2.

Остальные компоненты оптимального решениянайдем по обычным правилам метода

динамического программирования. Чтобы найтипредпоследнюю компоненту, учтем, что

х3 + у3 - -d3 = y4 или 2 + у3 - 3 = 0,oткуда у3 = 1. Из таблицы (2) значений

 находим

Аналогично, продолжая двигаться вобратном направлении и учтя, что х2 + у2 - d2 =

y3 или 3 + у2 - 2 = 1,получаем у2 = 0; из таблицы (1)значений х1(x) находим

.

Итак, оптимальный план производства имеетвид х1 = 0, х2 = 3, х3 = 2, а

минимальные общие

затраты составляют 32 единицы.

Полезна самопроверка полученногорезультата. Для этого по исходным данным и

найденному

плану производства заполняем таблицу 5 иубеждаемся, что заявки потребителей на

каждом

этапе выполняются у1 + х1 ³ d1 у2 + х2 ³d2

у3 + х3 ³ d3

3 + 0 ³ 3 0 + 3

³ 2 1 + 2 ³ 3

и что суммарный объем производства иимевшегося к началу первого этапа запаса

продукции равен суммарной потребностиу1 + х1 + х2 + х3 = d1 + d2 + d3

3 + 0 + 3 + 2 = 3 + 2 + 3

причем это достигается при наименьшихвозможных затратах на производство и

хранение продукции

j(х1) + j(х2) + j(х3) + h1у2 + h2у3 =F3(y4=0)

2 + 17 + 10 + 0 + 3 = 32

Самопроверка результатов

 

ЭТАПЫ январь февраль март Итого за 3 месяца

Имеем продукции к началу месяца, шт. у1 = 3 у2 = 0 у3 = 1 у1 = 3

Производим в течение месяца, шт. х1 = 0 х2= 3 х3 = 2 х1+ х2+ х3 = 5

Отпускаем заказчикам, шт. d1 = 3 d2= 2 d3 = 3 d1+ d2+ d3 = 8

 

Остаток к концу месяца (храним в течениетекущего месяца), шт. у2 = 0 у3 = 1

у4= 0

Затраты на производство, руб. j(х1)=2 j(х2)=17 j(х3)=10

j(х1) + j(х2) + j(х3)= 29

Затраты на хранение, руб. h1у2 = 0 h2у3 = 3 0

 h1у2 + h2у3 = 3

МАТРИЧНАЯ МОДЕЛЬ ПРОИЗВОДСТВЕННОЙ ПРОГРАММЫ ПРЕДПРИЯТИЯ

- производственнаяпрограмма

0*80+ 0,1*60 +0,2*70=20

0,4*80 +0*60 +0,1*70=39

0,2*80 +0,3*60 +0,2*70=48

где Y - объем товарной продукции.

где В – коэффициенты прямых затрат.

h11=4*0+7*0,1+ 2*0,2=1,1

h21=2*0+4*0,1+ 1*0,2=0,6

h31=20*0+13*0,1+ 16*0,2=4,5

h41=0,2*0+0,3*0,1+0,2*0,2=0,07

h12=4*0,4+7*0+ 2*0,1=1,8

h22=2*0,4+4*0+1*0,1=0,9

h32=20*0,4+13*0+16*0,1=9,6

h42=0,2*0,4+0,3*0+ 0,2*0,1=0,1

h13=4*0,2+7*0,3+2*0,2=3,3

h23=2*0,2+4*0,3+1*0,2=1,8

h33=20*0,2+13*0,3+ 16*0,2=11,1

h43=0,2*0,2+0,3*0,3+0,2*0,2=0,17

 

1,1*80 +1,8*60 +3,3*70=427

0,6*80 +0,9*60 +1,8*70=228

4,5*80 +9,6*60 +11,1*70=1713

0,07*80 +0,1*60 +0,17*70=23,5

где S – полные затраты всех внешнихресурсов.

МАТРИЧНАЯ ИГРА КАК МОДЕЛЬ КОНКУРЕНЦИИ И СОТРУДНИЧЕСТВА

 

Седловой точки нет. Обозначим искомуюоптимальную стратегию первого игрока (х,

1-х). Это вектор-столбец, который мызаписываем для удобства в виде строки.

Обозначим nj(x) – средний выигрыш первогов расчете на партию, когда он

использует стратегию (х, 1-х), а второй – j-юстратегию. Имеем n1(x)=х + 2(1-х);

n2(x)=2х +3(1-х); n3(x)=4х – 2(1-х);n4(x)=5х – 5(1-х). Возьмем на плоскости

систему координат, по горизонтальнойоси вправо отложим х, по вертикальной оси –

значения функции nj(x). Функцииn1(x), n2(x), n3(x), n4(x)- линейные, значит их

графики – прямые линии 1, 2, 3,4 соответственно.

Находим нижнюю огибающую огибающуюсемейства четырех прямых. Находим ее высшую

точку - М. Она и дает решение игры.Ее координаты определяются решением уравнения

n1(x)=n4(x), откуда х*=7/11,n=n1(x)=n4(x)=15/11.

Таким образом, оптимальная стратегияпервого есть Р*=(7/11, 4/11), а цена игры

n=15/11.

Заметим, что при этой стратегии первоговторой игрок не выбирает второй и третий

столбцы. Обозначим вероятность выборавторым игроком первого столбца через y, а

четвертого столбца – через (1- y).Учтем, например, что р1*=х*>0 и воспользуемся

утверждением о том, что еслирк*>0, то М(1; y*)=n, т.е. y* +2(1-y*)=15/11, откуда

y*=7/11.

Окончательный ответ таков: оптимальнаястратегия первого - Р*=(7/11, 4/11),

оптимальная стратегия второго –Q=(7/11;0;0;4/11), цена игры n=15/11.

АНАЛИЗ ДОХОДНОСТИ И РИСКА ФИНАНСОВЫХОПЕРАЦИЙ

Финансовой называется операция, начальноеи конечное состояния которой имеют

денежную оценку и цель проведения которойзаключается в максимизации дохода -

разности между конечной и начальнойоценками. Почти всегда финансовые операции

проводятся в условияхнеопределенности и потому их результат невозможно

предсказать заранее. Поэтомуфинансовые операции рискованны, т.е. при их

проведении возможны как прибыль таки убыток (или не очень большая прибыль по

сравнению с той, на что надеялисьпроводившие эту операцию). Существует несколько

разных способов оценки операциис точки зрения ее доходности и риска. Наиболее

распространенным являетсяпредставление дохода операции как случайной величины и

оценка риска операциикак среднего квадратического отклонения этого случайного

дохода.

Даны четыре операции Q1, Q2, Q3, Q4.Найдите средние ожидаемые доходы ириски ri

операций. Нанесите точки ( , ri) на плоскость, найдите операции,оптимальные по

Парето. С помощью взвешивающей формулы найдите лучшую и худшуюоперации.

Взвешивающая формула одна и та же:

j(Q) = 2 - r.

Q1 : 2 4 6 18

1/2 1/4 1/8 1/8

Q2 : 0 4 6 12

1/4 1/4 1/3 1/6

Q3 : 2 5 8 14

ј ј 1/3 1/6

Q4

: 0 1 2 8

1/3 1/3 1/6 1/6

Q1 =å qipi =2*1/2+4*1/4+6*1/8+18*1/8=5

Q21 = 25

M [Q21] = 4*1/2+16*1/4+36*1/8+324*1/8=51;

 

Q2 = 1+2+2=5

Q22 = 25

M [Q22] = 16*1/4+36*1/3+144*1/6=40;

 

Q

Q3 = 2+5=7

Q23 = 49

M [Q23] = 4*1/4+36*1/4+64*1/3+196*1/6=64;

 

Q4 = 2

Q24 = 4

M [Q24] = 1*1/3+4*1/6+64*1/6=70/6;

 

Нанесем средние ожидаемые доходы `Q ириски r на плоскость - доход откладываем по

горизонтали, а риски по вертикали(см. рис.):

Получили 4 точки. Чем правее точка (`Q,r), тем более доходная операция, чем

точка выше - тем более она рисковая.Значит, нужно выбирать точку правее и ниже.

Точка (`Q¢, r¢)доминирует точку (`Q, r) если `Q¢ ³`Q и r¢ £ r.

Точка, не доминируемая никакой другойназывается оптимальной по Парето, а

множество всех таких точек называется множествомоптимальности по Парето. Легко

видеть, что если из рассмотренных операций надовыбирать лучшую, то ее

обязательно надо выбрать из операций, оптимальных поПарето.

Для нахождения лучшей операции иногдаприменяют подходящую взвешивающую формулу,

которая для пар (`Q, r) дает одночисло, по которому и определяют лучшую

операцию. Например, пусть взвешивающаяформула есть j (Q)= 2×Q - r . Тогда

получаем:

j (Q1)= 2*5-5,1 = 4,9; j (Q2)=2*5-3,9=6,1; j (Q3)= 2*7-3,9=10,1; j (Q4)=

2*2-2,8=1,2

Видно, что 3-я операция - лучшая, а 4-я -худшая.

ЗАДАЧА ФОРМИРОВАНИЯ ОПТИМАЛЬНОГО ПОРТФЕЛЯЦЕННЫХ БУМАГ

Пусть V - матрица ковариаций рисковыхвидов ценных бумаг), M=(mi)

-вектор-столбец ожидаемых эффективностей долей xi капитала, вкладываемых вi-й

вид рисковых ценных бумаг, i=1,..,n. Пусть также I - n-мерныйвектор-столбец,

компоненты которого есть 1. Тогда оптимальное значениедолей xi есть

.

 Здесь V-1 - матрица, обратнаяк V . В числителе дроби стоит число,

взнаменателе, если выполнить все действия (верхний индекс Т

означаеттранспонирование вектора-столбца), тоже получится число, причем

константа,определяемая рынком и не зависящая от инвестора, V-1(M-m0I) -

вектор-столбец размерности n .Видно, что этот вектор не зависит от

эффективности портфеля mp. Таким образом, вектор долей рисковыхвидов ценных

бумаг пропорциональный этому вектору также не зависит от mp. Следовательно,

структура рисковой частипортфеля не зависит от mp. Однако суммакомпонент

вектора X* зависит от mp, именно, компоненты вектораX* пропорционально

увеличиваются сростом mp, поэтому доля x0 безрисковых вложений будет при

этом сокращаться.

 

Сформировать оптимальный портфельзаданной эффективности из трех видов ценных

бумаг: безрисковых эффективности 3и некоррелированных рисковых ожидаемой

эффективности 5 и 9и рисками 3 и 6 . Как устроенарисковая часть

оптимального портфеля? При какой ожидаемой эффективности портфеля возникает

необходимость воперации "short sale" и скакими ценными бумагами? Решение.

Итак,m0 =3, M= , V= . Зададимся эффективностью портфеля mp.

Теперь надо найти обратную матрицу кматрице V . Это просто: V-1 = . Вычислим

знаменатель:

 .

Итак, вектор долей рисковых бумаг есть X*=((mр-3)9/13)

Для безрисковых бумаг соответственноравняется x*0 =1- 4/26(mр-3)

–3/26(mр-3)=42-7mр/26.

Понятно, что необходимость воперации "short sale" возникнет, если x*0 < 0,

т.е. когда mр> 6 .

ЛИТЕРАТУРА

1. Математическиеметоды принятия решений в экономике. Учебник под ред. проф.

Колемаева В.А. -М.:ЗАО "Финстатинформ", 1999.

2. КолемаевВ.А., Калинина В.Н. Теория вероятностейи математическая

статистика. -М.: Инфра-М, 1999.

3. ГатауллинТ.М., Карандаев И.С., Статкус А.В. Целочисленное программирование

в управлении производством. МИУ, М.,1987.

4. ГмурманВ.Е. Теория вероятностей и математическая статистика. -М.: Высшая

школа, 1998.

5. ГмурманВ.Е. Руководство к решению задач по теории вероятностей и

математическойстатистике. -М.: Высшая школа, 1998.

6. ЕрмольевЮ.М., Ляшко И.И., Михалевич В.С., Тюптя В.И. Математические методы

исследования операций. -Киев: Вища школа, 1979.

7. ЕршовА.Т., Карандаев И.С., Шананин Н.А. Планирование производства и

линейное программирование. МИУ, М., 1981.

8. ЕршовА.Т., Карандаев И.С., Статкус А.В. Матричные игры и графы. МИУ, М.,

1986.

9. ЕршовА.Т., Карандаев И.С., Юнисов Х.Х. Исследование операций. МИУ, М.,

1990.

10. КалининаВ.Н., Панкин В.Ф. Математическаястатистика. -М.: Высшая

школа,1998.

11. КарандаевИ.С. Двойственные оценки в управлении.МИУ, М., 1980.

12. КарандаевИ.С. Решение двойственных задач воптимальном

планировании. -М.: Статистика, 1976.

13. КарандаевИ.С. Начала линейного, нелинейного идинамического

программирования. -М.: Знание, 1968.

14.  КарандаевИ.С. Руководство к решению задач поматематическому

программированию. МИУ, М., 1973.

15. КарандаевИ.С., Гатауллин Т.М. Математическийаппарат линейных

оптимизационных задач в управлении производством. МИУ, М., 1986.

16.  КарандаевИ.С. и др. Математические методыисследования операций

в примерах и задачах. ГАУ, М.,1993.

17. КолемаевВ.А. Математическая экономика. -М.:Инфра-М, 1998.

18. МалыхинВ.И. Математика в экономике. -М: Инфра-М, 1999.

19. МалыхинВ.И. Математическое моделирование экономики. -М: УРАО,

1998.

20. МалыхинВ.И. Финансовая математика. -М: Юнити, 1999.

21. МалыхинВ.И., Статкус А.В. Теория принятия решений. МИУ, М.,

1989.

22. НейманД., Моргенштерн О. Теория игр и экономическое поведение.

-М.: Наука, 1970.

23. ПервозванскийА.А., Первозванская Т.Н. Финансовыйрынок: расчеты

и риск. -М.: Инфра -М., 1994.

24. СаковичВ.А. Исследование операций. -Минск:Высшая школа, 1985.

25. СолодовниковА.С., Бабайцев В.А., Браилов А.В. Математика в

экономике. –М.: Финансы и статистика, 1998.

26. ТахаХ. Введение в исследование операций. –М.: Мир, 1985.


Информация о работе «5 различных задач по программированию»
Раздел: Информатика, программирование
Количество знаков с пробелами: 37269
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
32249
6
16

... лучей, исходящих из одной точки, называется многогранным выпуклым конусом с вершиной в данной точке.   1.4 Математические основы решения задачи линейного программирования графическим способом   1.4.1 Математический аппарат Для понимания всего дальнейшего полезно знать и представлять себе геометрическую интерпретацию задач линейного программирования, которую можно дать для случаев n = 2 и n = ...

Скачать
59893
13
0

... решения останется неизменным, т.е. будет состоять из переменных (Х3,Х6,Х4,Х5).   СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ 1. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного программирования. Ч.1. – Мн.: БГУИР, 1995. 2. Смородинский С.С., Батин Н.В. Методы и алгоритмы для решения оптимизационных задач линейного ...

Скачать
25011
8
6

... . 1.3. Построение ограничений и градиента целевой функции : 1.4. Область допустимых решений – отрезок AB. 1.5. Точка А – оптимальная. Координаты т. А: ; ; . 2. Решение задачи линейного программирования симплекс-методом. Прямая задача. Задачу линейного программирования для любой вершины в компактной форме можно представить в виде: Для получения используем алгоритм, приведённый в ...

Скачать
12929
19
6

... к решению параметрической задачи квадратичного программирования. 55 5.Экономическая часть 57 6.Библиография 65 1. Введение В настоящей работе рассматривается применение метода субоптимизации на многообразиях к решению задачи квадратичного программирования с параметром в правых частях ограничений. Метод субоптимизации на многообразиях, предложенный У.Зангвиллом в 1968 году для решения задач ...

0 комментариев


Наверх