Линейные уравнения и неравенства

16651
знак
0
таблиц
2
изображения

Романишина Дина Соломоновна, учитель математики гимназии №2 г. Хабаровска

1. Уравнения с одной переменной.

Равенство, содержащее переменную, называют уравнением с одной переменной, или уравнением с одним неизвестным. Например, уравнением с одной переменной является равенство 3(2х+7)=4х-1.

Корнем или решением уравнения называется значение переменной, при котором уравнение обращается в верное числовое равенство. Например, число 1 является решением уравнения 2х+5=8х-1. Уравнение х2+1=0 не имеет решения, т.к. левая часть уравнения всегда больше нуля. Уравнение (х+3)(х-4) =0 имеет два корня: х1= -3, х2=4.

Решить уравнение — значит найти все его корни или доказать, что корней нет.

Уравнения называются равносильными, если все корни первого уравнения являются корнями второго уравнения и наоборот, все корни второго уравнения являются корнями первого уравнения или, если оба уравнения не имеют корней. Например, уравнения х-8=2 и х+10=20 равносильны, т.к. корень первого уравнения х=10 является корнем и второго уравнения, и оба уравнения имеют по одному корню.

При решении уравнений используются следующие свойства:

Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получите уравнение, равносильные данному.

Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному.

Уравнение ах=b, где х – переменная, а и b – некоторые числа, называется линейным уравнением с одной переменной.

Если а¹0, то уравнение имеет единственное решение Линейные уравнения и неравенства.

Если а=0, b=0, то уравнению удовлетворяет любое значение х.

Если а=0, b¹0, то уравнение не имеет решений, т.к. 0х=b не выполняется ни при одном значении переменной.

Пример 1. Решить уравнение: -8(11-2х)+40=3(5х-4)

Раскроем скобки в обеих частях уравнения, перенесем все слагаемые с х в левую часть уравнения, а слагаемые, не содержащие х, в правую часть, получим:

16х-15х=88-40-12

х=36

Ответ: 36.

Пример 2. Решить уравнения:

3х2-5х=0;

х3-2х2-98х+18=0;

х2+7х+12=0.

Эти уравнения не являются линейными, но покажем, как можно решать такие уравнения.

3х2-5х=0; х(3х-5)=0. Произведение равно нулю, если один из множителей равен нулю, получаем х1=0; х2=Линейные уравнения и неравенства.

Ответ: 0; Линейные уравнения и неравенства.

Разложить на множители левую часть уравнения:

х2(х-2)-9(х-2)=(х-2)(х2-9)=(х-2)(х-3)(х-3), т.е. (х-2)(х-3)(х+3)=0. Отсюда видно, что решениями этого уравнения являются числа х1=2, х2=3, х3=-3.

с) Представим 7х, как 3х+4х, тогда имеем: х2+3х+4х+12=0, х(х+3)+4(х+3)=0, (х+3)(х+4)=0, отсюда х1=-3, х2=- 4.

Ответ: -3; - 4.

Пример 3. Решить уравнение: ½х+1ç+½х-1ç=3.

Напомним определение модуля числа: Линейные уравнения и неравенства

Например: ½3½=3, ½0½=0, ½- 4½= 4.

В данном уравнении под знаком модуля стоят числа х-1 и х+1. Если х меньше, чем –1, то число х+1 отрицательное, тогда ½х+1½=-х-1. А если х>-1, то ½х+1½=х+1. При х=-1 ½х+1½=0.

Таким образом, Линейные уравнения и неравенства

Аналогично Линейные уравнения и неравенства

а) Рассмотрим данное уравнение½х+1½+½х-1½=3 при х£-1, оно равносильно уравнению -х-1-х+1=3, -2х=3, х=Линейные уравнения и неравенства, это число принадлежит множеству х£-1.

b) Пусть -1 < х £ 1, тогда данное уравнение равносильно уравнению х+1-х+1=3, 2¹3 уравнение не имеет решения на данном множестве.

с) Рассмотрим случай х>1.

х+1+х-1=3, 2х=3, х=Линейные уравнения и неравенства. Это число принадлежит множеству х>1.

Ответ: х1=-1,5; х2=1,5.

Пример 4. Решить уравнение:½х+2½+3½х½=2½х-1½.

Покажем краткую запись решения уравнения, раскрывая знак модуля «по промежуткам».

Линейные уравнения и неравенства

-2 0 1 х

х £-2, -(х+2)-3х=-2(х-1), - 4х=4, х=-2Î(-¥; -2]

–2<х£0, х+2-3х=-2(х-1), 0=0, хÎ(-2; 0]

0<х£1, х+2+3х=-2(х-1), 6х=0, х=0Ï(0; 1]

х>1, х+2+3х=2(х-1), 2х=- 4, х=-2Ï(1; +¥)

Ответ: [-2; 0]

Пример 5. Решить уравнение: (а-1)(а+1)х=(а-1)(а+2), при всех значениях параметра а.

В этом уравнении на самом деле две переменных, но считают х–неизвестным, а а–параметром. Требуется решить уравнение относительно переменной х при любом значении параметра а.

Если а=1, то уравнение имеет вид 0×х=0, этому уравнению удовлетворяет любое число.

Если а=-1, то уравнение имеет вид 0×х=-2, этому уравнению не удовлетворяет ни одно число.

Если а¹1, а¹-1, тогда уравнение имеет единственное решение Линейные уравнения и неравенства.

Ответ: если а=1, то х – любое число;

если а=-1, то нет решений;

если а¹±1, то Линейные уравнения и неравенства.

2. Системы уравнений с двумя переменными.

Решением системы уравнений с двумя переменными называется пара значений переменных, обращающая каждое уравнение системы в верное равенство. Решить систему — значит найти все ее решения или доказать, что их нет. Две системы уравнений называются равносильными, если каждое решение первой системы является решением второй системы и каждое решение второй системы является решением первой системы или они обе не имеют решений.

При решении линейных систем используют метод подстановки и метод сложения.

Пример 1. Решить систему уравнений:

Линейные уравнения и неравенства

Для решения этой системы применим метод подстановки. Выразим из первого уравнения х и подставим это значение Линейные уравнения и неравенства во второе уравнение системы, получим

Линейные уравнения и неравенства,

Линейные уравнения и неравенства

Ответ: (2; 3).

Пример 2. Решить систему уравнений:

Линейные уравнения и неравенства

Для решения этой системы применим метод сложения уравнений. 8х=16, х=2. Подставим значение х=2 в первое уравнение, получим 10-у=9, у=1.

Ответ: (2; 1).

Пример 3. Решить систему уравнений:

Линейные уравнения и неравенства

Эта система равносильна одному уравнению 2х+у=5, т.к. второе уравнение получается из первого умножением на 3. Следовательно, ей удовлетворяет любая пара чисел (х; 5-2х). Система имеет бесконечное множество решений.

Ответ: (х; 5-2х), х–любое.

Пример 4. Решить систему уравнений:

Линейные уравнения и неравенства

Умножим первое уравнение на –2 и сложим со вторым уравнением, получим 0×х+0×у=-6. Этому уравнению не удовлетворяет ни одна пара чисел. Следовательно, эта система не имеет решений.

Ответ: система не имеет решений.

Пример 5. Решить систему:

Линейные уравнения и неравенства

Из второго уравнения выражаем х=у+2а+1 и подставляем это значение х в первое уравнение системы, получаем Линейные уравнения и неравенства. При а=-2 уравнение не а=-2 имеет решения, если а¹-2, то Линейные уравнения и неравенства.

Ответ: при a=-2система не имеет решения,

при а¹-2 система имеет решение Линейные уравнения и неравенстваЛинейные уравнения и неравенства.

Пример 6. Решить систему уравнений:

Линейные уравнения и неравенства

Нам дана система из трех уравнений с тремя неизвестными. Применим метод Гаусса, который состоит в том, что равносильными преобразованиями приводят данную систему к треугольной форме. Прибавим к первому уравнению второе, умноженное на –2.

 2х+у+3z=13

+ -2х-2у-2z=-12

-у+z=1 или у-z=-1.

Далее к третьему уравнению системы прибавим второе, умноженное на –3,

 3х+у+z=8

+ -3х-3у-3z=-18

-2y-2z=-10,

наконец прибавим к этому уравнению уравнение у-z=-1, умноженное на 2, получим - 4z=-12, z=3. Итак получаем систему уравнений:

Линейные уравнения и неравенства х+у+z=6

у-z=-1

 z=3, которая равносильна данной.

Система такого вида называется треугольной.

Ответ: (1; 2; 3).

3. Решение задач с помощью уравнений и систем уравнений.

Покажем на примерах, как можно решать задачи с помощью уравнений и систем уравнений.

Пример 1. Сплав олова и меди массой 32 кг содержит 55% олова. Сколько чистого олова надо добавить в сплав, чтобы в новом сплаве щсодержалось 60% олова?

Решение. Пусть масса олова, добавленная к исходному сплаву, составляет х кг. Тогда сплав массой (32+х)кг будет содержать 60% олова и 40% меди. Исходный сплав содержал 55% олова и 45% меди, т.е. меди в нем было 32·0,45 кг. Так как масса меди в исходном и новом сплавах одна и та же, то получим уравнение 0,45·32=0,4(32+х).

Решив его, находим х=4, т.е. в сплав надо добавить 4 кг олова.

Пример 2. Задумано двузначное число, у которого цифра десятков на 2 меньше цифры единиц. Если это число разделить на сумму его цифр, то в частном получится 4 и в остатке 6. Какое число задумано?

Решение. Пусть цифра единиц есть х, тогда цифра десятков равна х-2 (х>2), задуманное число имеет вид 10(х-2)+х=11х-20. Сумма цифр числа х-2+х=2х-2. Следовательно, разделив 11х-20 на 2х-2, получим в частном 4 и в остатке 6. Составляем уравнение: 11х-20=4(2х-2)+6, т.к. делимое равно делителю, умноженному на частное, плюс остаток. Решив это уравнение, получим х=6. Итак, было задумано число 46.

Пример 3. Три ящика наполнены орехами. Во втором ящике на 10% орехов больше, чем в первом, и на 30% больше, чем в третьем. Сколько орехов в каждом ящике, если в первом на 80 орехов больше, чем в третьем?

Решение. Пусть в первом ящике было х орехов, в третьем – y. Тогда во втором ящике было х+0,1х=1,1х или y+0,3y=1,3y. Учитывая, что в первом ящике было на 80 орехов больше, чем в третьем, составляем систему уравнений:

Линейные уравнения и неравенства , откуда y=440, х=520, 1,1х=572.

Замечание. Можно эту задачу решить, не составляя системы уравнений. Пусть в первом ящике было х орехов, тогда в третьем — х-80, во втором — 1,1х или 1,3(х-80). Имеем уравнение: 1,1х=1,3(х-80), х=520.

Ответ: в первом ящике было 520 орехов, во втором — 572, в третьем — 440.

Пример 4. Из двух городов А и В, расстояние между которыми 180 км, в 6 ч 20 мин. вышли навстречу друг другу автобус и легковой автомобиль. Их встреча произошла в 7 ч 50 мин. Если бы автобус вышел на 1 ч 15 мин. раньше, а легковой автомобиль на 15 мин. позже, то они встретились бы в 7 ч 35 мин. Какова скорость автобуса и легкового автомобиля?

Решение. Пусть скорость автобуса V1 км/ч, скорость легкового автомобиля V2 км/ч. Так как их встреча произошла через 1,5 ч, то имеем уравнение:1,5V1+1,5V2 =180. Если бы автобус вышел на 1ч 15 мин. раньше, то он был бы в пути 2 ч 30 мин. (7 ч 35 мин. – 5 ч 5 мин.= 2 ч 30 мин.). Если бы легковой автомобиль вышел на 15 мин. позже, то он был бы в пути 1 ч (7 ч 35 мин. – 6 ч 35 мин.= 1ч). Получаем уравнение: 2,5V1 +V2 =180.

Таким образом, имеем систему двух уравнений с двумя неизвестными:

Линейные уравнения и неравенства, откуда V1=40 км/ч, V2=80 км/ч.

Ответ: 40 км/ч, 80 км/ч.

4. Линейные неравенства с одной переменной.

Если переменной х придать какое-либо числовое значение, то мы получим числовое неравенство, выражающее либо истинное, либо ложное высказывание. Пусть, например, дано неравенство 5х-1>3х+2. При х=2 получим 5·2-1>3·2+2 – истинное высказывание (верное числовое высказывание); при х=0 получаем 5·0-1>3·0+2 – ложное высказывание. Всякое значение переменной, при котором данное неравенство с переменной обращается в верное числовое неравенство, называется решением неравенства. Решить неравенство с переменной – значит найти множество всех его решений.

Два неравенства с одной переменной х называются равносильными, если множества решений этих неравенств совпадают.

Основная идея решения неравенства состоит в следующем: мы заменяем данное неравенство другим, более простым, но равносильным данному; полученное неравенство снова заменяем более простым равносильным ему неравенством и т.д.

Такие замены осуществляются на основе следующих утверждений.

Теорема 1. Если какой-либо член неравенства с одной переменной перенести из одной части неравенства в другую с противоположным знаком, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 2. Если обе части неравенства с одной переменной умножить или разделить на одно и то же положительное число, оставив при этом без изменения знак неравенства, то получится неравенство, равносильное данному.

Теорема 3. Если обе части неравенства с одной переменной умножить или разделить на одно и то же отрицательное число, изменив при этом знак неравенства на противоположный, то получится неравенство, равносильное данному.

Линейным называется неравенство вида ax+b>0 (соответственно ax+b<0, ax+b³0, ax+b£0), где а и b – действительные числа, причем а¹0. Решение этих неравенств основано на трех теоремах равносильности изложенных выше.

Пример 1. Решить неравенство: 2(х-3)+5(1-х)³3(2х-5).

Раскрыв скобки, получим 2х-6+5-5х³6х-15,

-3х-1³6х-15, -9х³-14, Линейные уравнения и неравенства.

Ответ: Линейные уравнения и неравенстваЛинейные уравнения и неравенства.

Пример 2. Решить неравенство: Линейные уравнения и неравенства.

Освободимся от знаменателей, для чего умножим обе части неравенства на положительное число 6, оставив без изменения знак неравенства.

Линейные уравнения и неравенства, далее последовательно получаем Линейные уравнения и неравенства; Линейные уравнения и неравенства.

Последнее неравенство верно при любом значении х, так как при любом значении переменной х получается истинное высказывание 0>-55. Поэтому множеством его решений служит вся числовая прямая.

Ответ: (-¥; +¥).

Пример 3. Решить неравенство: ½х-1½<3.

На основании определения модуля данное неравенство запишем в виде совокупности двух систем неравенств

Линейные уравнения и неравенства (1)  Линейные уравнения и неравенства  (2)

решая эту совокупность получим (2), таким образом решением этого неравенства является промежуток (-2; 4).

Пример 4. Решить неравенство:½х+1½>2-х.

Линейные уравнения и неравенства

отсюда х>0,5 из первой системы, а вторая система – не имеет решения.

Ответ: (0,5; +¥)

5. Система и совокупности неравенств.

Говорят, что несколько неравенств с одной переменной образуют систему, если ставится задача найти множество общих решений заданных неравенств.

Значение переменной, при котором каждое из неравенств системы обращается в верное числовое неравенство, называется решением системы неравенств.

Множество решений системы неравенств есть пересечение множеств решений неравенств, образующих систему. Неравенства, образующие систему, объединяются фигурной скобкой.

Например: Линейные уравнения и неравенства 

Иногда используется запись в виде двойного неравенства. Например, систему неравенств Линейные уравнения и неравенства можно записать в виде двойного неравенства Линейные уравнения и неравенства.

Говорят, что несколько неравенств с одной переменной образуют совокупность, если ставится задача найти множество таких решений, каждое из которых является решением хотя бы одного из этих неравенств.

Значение переменной, при котором хотя бы одно из неравенств, образующих совокупность, обращается в верное числовое неравенство, называется решением совокупности неравенств.

Множество решений совокупности неравенств есть объединение множеств решений неравенств, образующих совокупность. Неравенства, образующие совокупность, иногда объединяются квадратной скобкой. Так, запись Линейные уравнения и неравенства означает, что неравенства образуют совокупность.

Пример 1. Решить систему неравенств: Линейные уравнения и неравенства  Û  Линейные уравнения и неравенства

Линейные уравнения и неравенства

Линейные уравнения и неравенства  Линейные уравнения и неравенства  х

С помощью числовой прямой находим, что пересечением этих множеств служит интервал Линейные уравнения и неравенства. Это и есть множество решений данной системы.

Пример 2. Решить совокупность неравенств:Линейные уравнения и неравенства

Линейные уравнения и неравенстваПреобразовав каждое из неравенств, получим совокупность, равносильную данной Линейные уравнения и неравенства

 Линейные уравнения и неравенства  Линейные уравнения и неравенства  х

Объединением этих множеств служит промежуток Линейные уравнения и неравенства, который и является решением совокупности неравенств.

6. Неравенства и системы неравенств с двумя переменными.

Известно, что пара действительных чисел (х0; у0) однозначно определяет точку координатной плоскости. Это дает возможность изображать множество решений неравенства или системы неравенств с двумя переменными геометрически, в виде некоторого множества точек координатной плоскости.

Пример 1. Дать геометрическую интерпретацию решения неравенства Линейные уравнения и неравенства.

Преобразуем данное неравенство к виду Линейные уравнения и неравенства.

Построим в прямоугольной системе координат прямую Линейные уравнения и неравенства.

Так как ордината любой точки, лежащей выше прямой Линейные уравнения и неравенства, больше, чем ордината точки, лежащей на прямой и имеющей такую же абсциссу, то множество точек плоскости, расположенных выше этой прямой и служит геометрической интерпретацией решения заданного неравенства.

Линейные уравнения и неравенства у

1

х

Линейные уравнения и неравенства

Геометрическая интерпретация позволяет записать решение в виде

Линейные уравнения и неравенства  или  Линейные уравнения и неравенства 

(для составления второй записи нужно преобразовать уравнение Линейные уравнения и неравенства к виду, разрешенному относительно х).

Пример 2. Решить систему неравенств: Линейные уравнения и неравенства

Найдем на координатной плоскости пересечение областей Линейные уравнения и неравенства, получим геометрическое решение заданной системы неравенств.

Линейные уравнения и неравенства

Линейные уравнения и неравенстваЛинейные уравнения и неравенства 

у= -х+5
(1; 4)
 

у=Линейные уравнения и неравенства

(4; 1)
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства
Линейные уравнения и неравенства

Для того, чтобы записать решения, найдем координаты точек пересечения линий Линейные уравнения и неравенства, Линейные уравнения и неравенства.

Решив систему уравненийЛинейные уравнения и неравенстванайдем координаты искомых точек: (1; 4) и (4; 1), таким образом приходим к системеЛинейные уравнения и неравенства

Задания для самостоятельного решения

Приведенные ниже задачи, являются контрольным заданием. Необходимо решить все задачи, однако, если это не удалось, присылайте те, которые решены. Правила оформления работ смотрите во вступительной статье.

М9.1.1 Решить уравнения:

а) Линейные уравнения и неравенства

б) Линейные уравнения и неравенства

в)Линейные уравнения и неравенства

г) Линейные уравнения и неравенства

д) Линейные уравнения и неравенства

ж) Линейные уравнения и неравенства

з) Линейные уравнения и неравенства

и) Линейные уравнения и неравенства

к) Линейные уравнения и неравенства

М9.1.2 Указать, при каких значениях параметра а уравнение имеет бесконечно много решений: Линейные уравнения и неравенства

М9.1.3 Указать, при каких значениях параметра а уравнение не имеет решений:

Линейные уравнения и неравенства

М9.1.4 Решить систему уравнений:Линейные уравнения и неравенства

М9.1.5 При каких значениях параметра а система имеет бесконечно много решений?

Линейные уравнения и неравенства

М9.1.6 Решить задачи:

а) сплав состоит из цинка и меди, входящих в него в отношении 1:2, а другой сплав содержит те же металлы в отношении 2:3. Из скольких частей обоих сплавов можно получить третий сплав, содержащий те же металлы в отношении 17:27?

б) расстояние между пристанями А и В теплоход проходит по течению за 5 ч, а против течения за 6 ч. За сколько часов проплывет по течению это расстояние плот?

М9.1.7 Решить неравенство:Линейные уравнения и неравенства

М9.1.8 Решить совокупность неравенств:Линейные уравнения и неравенства

М9.1.9 Найти геометрические решения систем неравенств и, по крайней мере, один из видов записи решений:

а) Линейные уравнения и неравенства б)


Информация о работе «Линейные уравнения и неравенства»
Раздел: Математика
Количество знаков с пробелами: 16651
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
4744
0
3

... к равносильной системе ступенчатого (или треугольного) вида, из которой последовательно, начиная с последних (по номеру) переменных, находятся все остальные переменные. Рассмотрим решение системы (1) m линейных уравнений с nпеременными в общем виде:  (3) Если m=n, то рассмотрим расширенную матрицу. Учитывая правую часть, приведем данную матрицу к треугольному виду:   Ситема линейных ...

Скачать
92269
3
13

... ;[0; 1), тогда x – x +1 = 1; 1 = 1 Þ x — любое число из [0; 1). В) x Î[1; ¥), тогда x + x – 1 = 1; 2x = 2; x = 1 Î[1; ¥). Ответ: x Î[0; 1]. Основные методы решения рациональных уравнений. 1) Простейшие: решаются путём обычных упрощений — приведение к общему знаменателю, приведение подобных членов и так далее. Квадратные уравнения ax2 + bx + c = 0 решаются по ...

Скачать
54343
1
32

... функция является знакопостоянной. Вычисляя, например, , получаем, что функция принимает только положительные значения. Ответ. . Метод интервалов позволяет решать более сложные уравнения и неравенства с модулями, но в этом случае он имеет несколько иное назначение. Суть состоит в слудующем. Находим корни всех подмодульных выражений и разбиваем числовую ось на промежутки знакопостоянства этих ...

Скачать
98604
5
19

... проведении исследования были решены следующие задачи: 1)  Проанализированы действующие учебники алгебры и начала математического анализа для выявления представленной в них методики решения иррациональных уравнений и неравенств. Проведенный анализ позволяет сделать следующие выводы: ·в средней школе недостаточное внимание уделяется методам решения различных иррациональных уравнений, в основном ...

0 комментариев


Наверх