6. Экология и охрана окружающей среды.

В настоящее время очень важными являются исследования, которые прямым или косвенным образом могут повлиять на экологиче­скую обстановку, позволят улучшить технологические параметры прибо­ров и механизмов, в производственном процессе изготовления которых используются вредные химические вещества и материалы.

В данной дипломной работе были проведены исследования погрешностей волоконно-оптических гироскопов (ВОГ) и предложен ряд схемо­технических методов улучшения их точностных и технологических харак­теристик. В настоящее время эти оптико-электронные приборы находят широкое применение в различных областях благодаря их потенциальным возможностям использования в качестве чувствительных элементов вращения в инерциальных системах навигации, управления и стабилиза­ции.

Применение в авиации и космонавтике более качественных и точных приборов несомненно благоприятно отразится на экологической обстановке окружающей среды. С созданием автоматизированных систем посадки и управления летательными аппаратами нового поколения сни­зиться процент аварий вызванных сбоями в аппаратуре старого образца. В частности, волоконно-оптические гироскопы могут полностью вытеснить сложные и дорогостоящие электромеханические (роторные) гироскопы и трёхосные гиростабилизированные платформы, которые помимо вред­ного воздействия на окружающую среду ( использование смазочных материалов подвижных частей, высокие электромагнитные поля, вредное производство) имеют гораздо низкий срок службы, а следовательно более высокие требования к их утилизации.

Использование новейших технических разработок позволит зна­чительно повысить качество выпускаемых приборов и тем самым снизить требования по экологическому контролю за производством и эксплуата­цией устройств, обладающих свойствами уникальными по сравнению с используемыми ранее.

Малые габариты и масса конструкций приборов, анализируемых в дипломной работе позволят заметно снизить нагрузку на механическую часть летательных аппаратов, что даст возможность использовать освободившиеся ресурсы для аппаратуры экологического мониторинга.

Вопросы, рассмотренные в главе 2 позволяют сделать вывод о невысокой стоимости производства и конструирования гироскопов при массовом изготовлении, относительной простоте и пониженной вредности технологии. Важное значение имеет низкое потребление энергии при использовании волоконно-оптических устройств и полупроводниковых приборов, входящих в состав ВОГ, так как получение дополнительной энергии на борту всегда связано с использованием генераторных устройств, обладающих низкими экологическими характеристиками. Применение горюче-смазочных материалов повышает вероятность возникновения аварийных пожарных ситуаций и как следствие этого экологических катастроф.

Использование ВОГ заметно снижает требования предъявляемые к утилизации отработавших свой срок механизмов, так как при производстве этих приборов используется значительно меньшее количество вредных веществ и материалов. Продолжительный срок работы и высокие ремонтные качества ВОГ также могут благоприятно сказаться на их использовании, так как использование ненадёжных механических приборов негативно влияет на экологическую обстановку.

Сделанные в работе выводы позволят продолжить исследования в области повышения как технических, так и производственно-эксплуатационных характеристик приборов что несомненно благоприятно скажется на увеличении срока службы, снижении стоимости и улучшении экологической обстановки, связанной с их работой.

Заключение

В ходе выполнения дипломной работы проведен анализ работы ВОГ, обобщенной модели шумов и нестабильностей произведена оценка предельной (потенциальной) чувствительности прибора. На основе свойства взаимности рассмотрена минимальная конфигурация ВОГ. Оценено современное состояние элементной базы. При этом значительное внимание уделено свойствам волоконных световодов и проведен анализ возможных неоднородностей и потерь для различных типов волокон. Рассмотрены основные элементы ВОГ: волоконный контур, излучатели и фотодетекторы, а также предложены способы компенсации шумов и нестабильностей ВОГ .

Отражены технико-экономические аспекты работы, вопросы безопасности жизнедеятельности при проведении исследований, а также проблемы экологической безопасности при использовании прибора.

На основании анализа проведенного в дипломной работе можно выделить два направления совершенствования ВОГ. Первое направление связано с улучшением параметров и характеристик существующих элементов BOГ и с созданием новых элементов, т. е. с развитием и освоением новой технологии изготовления элементов. Второе направление состоит в разработке методов и устройств исключения или компенсации различного рода шумов и нестабильностей прибора, в разработке новых схемотехнических вариантов ВОГ, что в конечном счете приведет к увеличению точности измерения угловой скорости. Оба направления тесно взаимосвязаны.

Совершенствование элементов ВОГ во многом, по-видимому, должно зависеть от перехода в диапазон 1,2.. ...1,3 мкм. Этот переход потребует создания и массового производства одномодового волокна и волокна, сохраняющего поляризацию, с малыми потерями (около 0,1 дБ/км).

Проектирование датчиков может быть сущест­венно упрощено, если вместо обычного одномодового во­локна будет использовано волокно, сохраняющее поляри­зацию. Однако такое волокно с требуемой эффективно­стью еще пока находится в экспериментальной стадии; тре­буется дальнейшее улучшение его качества и уменьшение стоимости. Задача промышленности состоит в создании волокна, сохраняющего поляризацию, с малыми потерями и стоимостью не намного более обычного одномодового волокна.

Переход в длинноволновый диапазон, давая выигрыш в потерях, потребует увеличения физической длины контура с тем, чтобы сохранить требуемую чувствительность. Одним из преимуществ перехода к длинным волнам яв­ляется увеличение сердечника волокна, что облегчает со­единение излучателя с волокном, волокна с волокном, волокна с интегрально-оптическими схемами. Кроме этого, может встать проблема выбора излучателей и фотоприемников длинноволнового диапазона. Фотоприемники диапазона 1,2... 1,6 мкм, главным образом на основе InGaAsP, менее чувствительны, чем кремниевые фотоприемники диапазона 0,85 мкм. Длинноволновые диоды много дороже, чем диоды на 0,85 мкм. Таким образом, компоненты длинноволнового диапазона следует использовать в датчиках скорости вращения высокой эффективности (точности).

При выборе излучателя для датчика скорости вращения наряду с длиной волны важным является также ширина спектра излучения.

Одной из характерных особенностей излучателей ВОГ является та, что излучатель должен инжектировать в одномодовый волоконный световод достаточную оптическую мощность, примерно около 100 или более микроватт.

Это условие наталкивается на необходимость надлежащей фокусировки света от большинства лазеров, генерирующих преимущественно на одной поперечной моде. Излучение полупроводникового диодного лазера генерирующего на одной поперечной моде, нелегко ввести в световод, поскольку излучение имеет эллиптическое поперечное распределение с аберрациями. Если волокно соединяется встык с выходной гранью лазера, то коэффициент связи составляет от 10 до 20%; с помощью линз коэффициент связи можно увеличить до 50%. Для суперлюминесцентных диодов коэффициент связи несколько меньше.

Другое ограничение, налагаемое на источник излучения в ВОГ, определяется шумом обратного рэлеевского рассеяния света в волокне. Этот шум в основном может быт уменьшен за счет уменьшения длины когерентности излучения светового источника. Для получения хорошей точности ВОГ длина когерентности излучения должна составлять около 1 см. Некоторые диодные источники имеют длину когерентности менее 1 мм, и поэтом без всяких модификаций могут применяться в ВОГ.

Учитывая сказанное предпочтительно использование суперлюминесцентных диодов.

Отсутствие достаточного количества выпускаемых промышленностью соединителей одномодового волокна является серьезной помехой развитии интерферометрических датчиков.

Оптические соединители для волокна, сохраняющего поляризацию еще находятся в стадии разработки.

Для сборки соединителей и сборки других волоконных компонент в подсистемы волоконных датчиков эффективно ши­роко использование технологического процесса сращивания концов волокна плавлением.

В зависимости от конструктивных особенностей ВОГ, изготовление последнего может потребовать следующих элементов: пространственных и поляризационных фильтров, вращателей поляризации или «выравнивателей» поляризации, фазосдвигающих ячеек (ячеек смещения), частотных и фазовых модуляторов, переключателей и других элементов. Применение волокна, сохраняющею поляризацию, способствует значительным упрощениям. Применение интегрально-оптических схем также может содействовать решению проблемы элементной базы.

Кроме упомянутых в дипломной работе дестабилизирующих факторов, действующих на ВОГ, необходимо изучение еще ряда источников ошибок прибора, вносящих, однако, меньший вклад в суммарную погрешность ВОГ. К ним относятся рассеяние Ми, рассеяние Бриллюэна, спонтанные шумы, дробовые и тепловые шумы, амплитудные шумы источника излучения и др.

Изучение физической природы этих шумов и нестабильностей позволит разработать устройства, компенсирующие их влияние на точность прибора.

Проводимые работы по созданию ВОГ должны носить исследовательский и конструкторский характер:

а) изучаться источники погрешностей и нестабильностей в ВОГ;

б) анализироваться схемотехнические решения и экспериментально проверяться конструкторские варианты ВОГ, позволяющие добиться требуемой точности;

 в) продолжать поиск материалов и элементов, позволяющих реализовать оптимальную структуру ВОГ.

Можно предположить, что результаты анализа проведенного в данной дипломной работе послужат материалом для дальнейшей исследовательской и конструкторской работы, направленной на улучшение характеристик волоконно-оптических гироскопов.

Литература

 

1. Шереметьев А.Г. Волоконно-оптический гироскоп. -М.:

 Радио и связь, 1987.

2. Ионов А.Д. Статистически нерегулярные оптические и электрические кабели связи. -Томск: Радио и связь, 1990.

3. Гроднев И.И. Волоконно-оптические линии связи. -М.:

Радио и связь, 1990.

4. Чео П.К. Волоконная оптика. -М: Энергоатомиздат,1988.

5. Свечников Г.С. Элементы интегральной оптики. -М.:

 Радио и связь, 1987.

6. Федоров Б.Ф. Оптический квантовый гироскоп. -М: Машиностроение, 1973.

7. Методические указания к технико-экономическому обоснованию дипломных проектов по специальностям «электронно-медицинская аппаратура» и «конструирование и производство радиоаппаратуры». -Л.: ЛЭТИ,1985.

8. Безопасность жизнедеятельности. Методические указания по дипломному проектированию. -СПб.:ЛЭТИ,1996.

Дипломная работа посвящена анализу погрешностей волоконно-оптического гироскопа и является попыткой последовательного рассмотрения принципов построения ВОГ исходя из минимизации влияния элементов на его точностные характеристики. В работе рассмотрены основные принципы волоконно-оптической гироскопии, дана характеристика основных элементов ВОГ различных типов и предложены методы компенсации некоторых погрешностей, обусловленных различными факторами.

Возможность создания реального высокочувствительного ВОГ появилась лишь с промышленной разработкой одномодового диэлектрического световода с малым затуханием. Конструирование ВОГ на таких световодах определяет уникальные свойства прибора:

n потенциально высокая чувствительность (0.01 град/сек и менее);

n малые габариты и масса конструкции, благодаря возможности создания ВОГ на интегрально-оптических схемах;

n невысокая стоимость производства и относительная простота технологии по сравнению с роторными гироскопами;

n низкое потребление энергии;

n большой динамический диапазон измеряемых угловых скоростей;

n отсутствие вращающихся механических элементов (роторов) и подшипников, что повышает надежность;

n практически мгновенная готовность работы (не затрачивается время на раскрутку ротора);

n низкая чувствительность к линейным ускорениям;

n высокая помехоустойчивость;

Принцип действия ВОГ основан на вихревом эффекте Саньяка, открытым в 1913 году. Если в замкнутом оптическом контуре в противоположных направлениях распространяются два световых луча, то при неподвижном контуре фазовые набеги обоих лучей, прошедших весь контур, будут одинаковыми. При вращении контура вокруг оси, нормальной к плоскости контура, фазовые набеги лучей неодинаковы, а разность фаз лучей пропорциональна угловой скорости вращения контура. Для объяснения вихревого эффекта Саньяка разработаны три теории: кинематическая, доплеровская и релятивистская. В дипломной работе рассмотрены первые две.

В рамках кинематической теории рассмотрен плоский замкнутый оптический контур произвольной формы, в котором распространяются в противоположных направлениях две световые волны. Плоскость контура перпендикулярна оси вращения. Приняв участок пути светового луча бесконечно малым и выразив линейную скорость точки через ее радиус-вектор получим выражение для времени обхода участка контура двумя противоположными лучами.

При вращении контура с некоторой угловой скоростью кажущаяся длина участка для двух волн оказывается различной. Считая скорость света инвариантной величиной связываем удлинение и сокращение путей с удлинением и сокращением отрезков времени и получаем выражение для относительного запаздывания, которое можно выразить через разность фаз встречных волн. Суммирование по всей длине контура определяет итоговую разность фаз.

Рассмотрение идеального кольцевого оптического контура с системой из двух зеркал позволяет получить тот же результат для разности времен распространения встречных лучей.

Явление изменения частоты колебания, излученного передатчиком и принимаемого приемником, наблюдающееся при взаимном относительном перемещении излучателя и приемника позволяет рассмотреть эффект Саньяка в рамках доплеровской теории.

Относительный фазовый сдвиг в данном случае определяется разностью частот волн, претерпевших доплеровский сдвиг и также выражается через угловую скорость вращения контура.

На основе рассмотренного эффекта можно построить принципиальную схему простейшего ВОГ. Излучение от источника попадает на светоделитель, где разделяется на две равные части, которые пройдя замкнутый контур, состоящий из многовитковой катушки волокна попадают на фотодетектор. Выделенная фаза Саньяка преобразуется устройством обработки в угловую скорость вращения и при необходимости интегрируется с целью определения угла поворота системы.

Интенсивность излучения на фотодетекторе пропорциональна косинусу разности фаз встречных волн, что определяет низкую чувствительность прибора к малым угловым скоростям.

Для максимизации чувствительности к малым изменениям информативного параметра в волоконный контур необходимо поместить простой фазовый модулятор, дающий невзаимный фазовый сдвиг p/2 между двумя противоположно бегущими лучами. Тогда интенсивность на фотодетекторе при малых угловых скоростях изменяется почти линейно.

Так как показания прибора полностью определяются разностью фаз встречно бегущих волн все ошибки ВОГ связаны с невзаимностью условий их распространения.

Основными факторами, влияющими на условия распространения встречно бегущих волн являются:

n флуктуации интенсивности и частоты источника излучения;

n изменение характеристик светоделителя;

n обратное рассеяние от лучей движущихся в разных направлениях;

n электрооптические эффекты в волокне;

n магнитооптические эффекты в волокне;

n тепловые градиенты;

n поляризационные эффекты;

n тепловые шумы нагрузочных элементов выходного тракта;

n дробовые шумы фотодетектора.

В работе проведена оценка предела чувствительности (точности) ВОГ , определяемая уровнем фотонных шумов и зависящая от интенсивности оптического излучения падающего на фотодетектор. Полученные теоретические выражения для ошибки обусловленной дробовыми шумами позволяют сделать вывод о необходимости увеличения длины контура и уменьшения полосы пропускания НЧ-фильтра выходного каскада. (график)

Использование высококогерентных лазерных источников позволяет снизить уровень дробовых шумов, однако когерентная составляющая обратного (рэлеевского) рассеяния в волокне приводит к возникновению ошибки в разности фаз между двумя лучами. Исходя из этого предпочтительно использование источника с длиной когерентности много меньшей, чем длина волоконного контура. В этом случае шум связанный с отражением на конце волокна, суммируется некогерентно с полезным сигналом.

Использование дополнительной модуляции сигналов также позволяет «декогерировать» шум обратного рассеяния.

Во второй главе рассмотрены вопросы влияния элементов ВОГ на точностные характеристики системы.

Анализ характеристик источников излучения позволяет сделать вывод о предпочтительности использования суперлюминесцентных диодов, являющихся низко когерентными и позволяющими компенсировать влияние эффекта Керра и обратного рассеяния. Также они обладают меньшей температурной зависимостью, проще в конструктивном исполнении и являются очень надежными.

Большое внимание уделено характеристикам волоконного контура, так как именно контур является основным источником погрешностей в ВОГ. Рассмотрение количественных значений потерь в волокне является недостаточным для анализа точности ВОГ. Интерес представляет оценка статистических характеристик параметров контура. В работе рассмотрены дисперсионные свойства волокон с различными профилями показателя преломления, проведена качественная оценка зависимостей дисперсии профиля от корреляционных свойств для различных типов неоднородностей в волокне. (графики)

Полученные соотношения позволяют по известным параметрам неоднородностей косвенно определить как вносимые потери так и характер невзаимностей для различных участков волокна.

Наибольшее влияние на характеристики ВОГ могут оказывать изменение радиуса сердцевины и случайные изгибы волокна приводящие к увеличению дисперсии профилей и уширению импульсов.

Важным источником шумов в ВОГ является также фотоприемник. Фоновая засветка, дробовый шум темнового тока, квантовый шум внутреннего фотоэффекта, избыточный шум внутреннего усиления, тепловой шум усилителя и модуляционный шум преобразователя оказывают непосредственное влияние на точность ВОГ.

Качественная оценка эквивалентной мощности шума фотоприемника для различных значений полосы пропускания системы позволяет сделать вывод о необходимости использования лавинных фотодиодов обладающих минимальным уровнем шума и позволяющих значительно увеличить отношение сигнал/шум при низких уровнях сигнала.

Анализ прямых динамических эффектов позволил качественно оценить термически индуцированную невзаимность фазы Саньяка для различных значений длины контура и сделать вывод о необходимости высокой термостабилизации прибора.

Необходимость поляризационной стабильности обусловлена влиянием магнитного поля на разность фаз колебаний. (график)

Использование волокна с устойчивой поляризацией снизит требования к поляризационным устройствам и обеспечит высокую точность прибора.

В качестве компенсации погрешностей предложены два схемотехнических метода и рассмотрены варианты использования некоторых элементов ВОГ. Проведена качественная оценка выигрыша в чувствительности прибора.

Паразитная поляризационная модуляция, сопровождающая работу волоконных фазовых модуляторов, является серьезным фактором, ограничивающим точностные характеристики ВОГ. Одним из путей уменьшения паразитной поляризационной модуляции может быть изготовление фазового модулятора в виде двух номинально идентичных половин, между которыми устанавливается модовый конвертор, преобразующий поляризационные моды друг в друга. При этом дифференциальная фазовая модуляция поляризационных мод, возникшая в первой половине фазового модулятора, компенсируется дифференциальной фазовой модуляцией противоположного знака, имеющей место во второй половине модулятора. Поскольку трудно добиться полной идентичности половин фазового модулятора необходимо спроектировать фазовый модулятор, таким образом, чтобы после конверсии поляризационных мод излучение снова проходило в прямом или обратном направлении по тому же оптическому пути что и до нее. Этого можно достичь используя фазовый модулятор отражательного типа.

Одним из путей повышения точности ВОГ может быть использование в них суперфлуоресцентных источников излучения. Такие источники близки по свойствам к тепловым, но характеризуются высоким уровнем избыточного шума. Для подавления избыточного шума можно использовать балансное детектирование. В качестве опорного сигнала использовать излучение источника, задержанное на время прохождения света по оптическому тракту ВОГ.

Для обеспечения когерентного взаимодействия информативного и опорного сигнала можно использовать в качестве ответвителя направленный ответвитель 3x3. Излучение от источника поступает через направленный ответвитель на входы чувствительного контура, а затем на фотодетекторы, выходы которых подключены к дифференциальному усилителю. Каждая из встречных волн является и информативной (сигнальной) и одновременно - опорной для другой волны. На выходе дифференциального усилителя избыточный шум, обусловленный фоновой засветкой оказывается скомпенсированным.

Основным механизмом потерь в волокне является обратное рэлеевское рассеяние. Каждая первичная волна, противоположно распространяющаяся в волоконном контуре, возбуждает маломасштабные неоднородности в волокне, которые в свою очередь действуют как индуцированные дипольные излучатели. Световод захватывает часть рассеянного излучения и канализирует его в обратном направлении. Вклады от каждого элементарного рассеивателя суммируются векторно со случайной фазой и образуют полное рассеянное поле в каждом направлении. На выходе контура появляется составляющая фазового сдвига отличная от фазы Саньяка, что приводит к ошибке в измерении скорости.

Способы минимизации ошибки ВОГ, обусловленной обратным рэлеевским рассеянием могут быть связаны с уменьшением взаимной когерентности между первичной и вторичной (рассеянной) волной. Частотная модуляция первичного сигнала, уменьшая когерентность не вносит дополнительной невзаимности в контур. Изменения частоты лазерного излучения также могут быть источником рандомизации фазы. Уменьшение когерентности можно также реализовать с помощью дополнительной фазовой модуляции первичной волны.

Уменьшить ошибку можно используя способ усреднения в течении постоянной интегрирования системы обработки.

Оптический нелинейный эффект Керра проявляется в виде возмущения коэффициента преломления среды при изменении интенсивности воздействующего на среду электрического поля. Если мощности оптических лучей, распространяющихся в противоположных направлениях неодинаковы, а следовательно неодинаковы и постоянные распространения, то это приводит к фазовой невзаимности контура и в результате к ошибке измерения угловой скорости.

Компенсации этого эффекта можно достичь прямоугольной модуляцией источника излучения или выбором источника с соответствующими спектральными характеристиками.

оптической гироскопии



Эффект Саньяка в кольцевом оптическом контуре


Принципы Волоконно


 Доплеровская теория.

1.  

 2.  3.

4.

Кинематическая теория.

1. 2. 3.

4.  5.  

6.

7.

Зависимость коэффициента затухания от радиуса корреляции нерегулярностей

 функции профиля показателя сердцевины :

1 - для ступенчатого профиля; 2 - для гауссова профиля.

(n1=1.5; D=0.01;l=1.3 мкм; V=2.4;a=2.3 мкм)


Основные этапы фотоэлектрического преобразования при детектировании оптического сигнала.

Фоновая засветка

(помеха)

 
Подпись: Фотоэлектрическое поглощение-генерация электронно-дырочных пар

Дробовый шум

темнового тока

 

Квантовый шум внутреннего фотоэффекта

 

Избыточный шум внутреннего усиления

 
Подпись: Выходной фототок
 фотоприёмника




Тепловой и дробовый шумы усилителя

 

Модуляционный и пороговый шумы преобразователя

 

Фаза Саньяка в угловой скорости вращения для

 различных значений параметра L R .


Структуры одномодовых световодов с устойчивой поляризацией:

 а - волокно с эллиптическим сердечником;

б - волокно с боковым ячеечным распределением показателя преломления;

в - волокно с эллиптической внешней оболочкой;

 г - волокно с боковым ячеечным напряжением.

Возмущение поля в точке Р источником с

плотностью тока  J в точке  Q

 

 

Сферические полярные координаты точек  Р  и  Q

 

 

 

 


Световод со случайными колебаниями радиуса сердцевины


 Дисперсия изменения гауссова профиля при

изменении радиуса сердцевины волокна

Скругленный прямоугольник: a = 0Скругленный прямоугольник: r

Дисперсия изменения гауссова профиля при

случайных изгибах оси волокна

Скругленный прямоугольник: D=f(a,Df)Скругленный прямоугольник: a = 0Скругленный прямоугольник: r

Дисперсия изменения гауссова профиля при

эллиптичности волокна

Скругленный прямоугольник: Dx1Скругленный прямоугольник: Dx4Скругленный прямоугольник: Dx2Скругленный прямоугольник: Dx4Скругленный прямоугольник: a = 0Скругленный прямоугольник: rСкругленный прямоугольник: D=f(a,Df)

 

 

Дисперсия уширения импульса при

изменении радиуса сердцевины волокна

Скругленный прямоугольник:  rСкругленный прямоугольник: a = 0Скругленный прямоугольник: Dx1Скругленный прямоугольник: Dx2Скругленный прямоугольник: Dx4Скругленный прямоугольник: Dx4 

 

Минимально обнаруживаемая угловая скорость вращения

в функции от параметра волоконного контура

LD,m2

 

 

Схема волоконно-оптического гироскопа

 с ответвителем типа 3´3.

 

 


1,2-фотодетекторы; 3-источник излучения; 4-направленный

ответвитель 3x3; 5-волоконный контур; 6-дифференциальный усилитель;

7,8 -дополнительные устройства (ФМ, поляризатор)

Вариант включения отражательного фазового модулятора

в схему волоконно-оптического гироскопа.


1,4 -направленные ответвители; 2-волоконный контур; 3,3`-отражательные

фазовые модуляторы; 5,5`-модулирующие отрезки волокна;

6,6`-ячейки Фарадея с углом вращения 45°; 7,7`-зеркала.

Минимальная конфигурация ВОГ

 

 

 


Обобщенная модель погрешностей ВОГ


 

L=A×exp(i×j)×exp(-i×j0) S=A×exp(i×j)×exp(i×j0)

на фотодетекторах:

E1 = S+exp(i×j1×L) E2 = L+exp(i×j1×S)

I1 = |S|2+|L|2+exp(i×j1)×L×S*+exp(-i×j1)×S×L*+n1

I2 = |S|2+|L|2+exp(i×j1)×S×L*+exp(-i×j1)×L×S*+n2

Iout = 2|A|2×sin(j1)×sin(2×j0)+n1-n2

 


 

M1(t) = N’(t)×K1×N(t) = [detN(t)]×K1

detN(t) = n11×n22 - n12×n21

Эквивалентная мощность шума фотоприемника

 в функции от шумового тока для различных

значений полосы пропускания системы

Термически индуцированная невзаимность фазы Саньяка

в функции от DТ для различных значений длины контура


 

Разность фаз, обусловленная влиянием магнитного поля

в функции от угла поворота плоскости поляризации на

данном участке контура при различных значениях

 напряженности поля

Изменение интенсивности суммарного излучения

в зависимости от фазы Саньяка, обусловленной вращением


Информация о работе «Анализ погрешностей волоконно-оптического гироскопа»
Раздел: Радиоэлектроника
Количество знаков с пробелами: 206582
Количество таблиц: 2
Количество изображений: 63

Похожие работы

Скачать
67879
12
0

... большие габариты, малый КПД, потребность во внешнем устройстве накачки являются основными причинами, по которым этот источник не используется в современных ВОСП. Практически во всех волоконно-оптических системах передачи, рассчитанных на широкое применение, в качестве источников излучения сейчас используются полупроводниковые светоизлучающие диоды и лазеры. Для них характерны в первую очередь ...

Скачать
30892
0
6

... за счет использования двигателя стабилизации меньших габаритов, имеющего меньший момент сухого трения вокруг оси вращения и меньший коэффициент демпфирования. Габаритные размеры гиростабилизатора телекамеры с наружным кардановым подвесом оказываются меньше, чем с внутренним, т.к. в последнем случае для получения достаточных рабочих углов поворота платформы необходимо выполнение подвеса по ...

Скачать
50223
0
3

... , подобных квантовым точкам, обещает большую точность и снижение стоимости путем использования методов производства, разработанных для полупроводниковой промышленности [2].   Приложения современных нанотехнологии в медицине Сегодня мы еще довольно далеки от описанного Фейнманом микроробота, способного через кровеносную систему проникнуть внутрь сердца и произвести там операцию на клапане. ...

0 комментариев


Наверх