Введение.

В современном машиностроении применяются различные конструкционные материалы. Однако и до настоящего времени чугун является одним из основных конструкционных материалов. Например, вес чугунных отливок составляет до 50% веса машин. Это обусловливается простотой и относительной дешевизной изготовления чугунных деталей, хорошими литейными свойствами чугуна, его высокой износостойкостью, малой чувствительностью к концентраторам напряжений, способностью гасить вибрацию и т. д.

Одной из актуальных задач стоящих перед организациями, эксплуатирующих автомобильную и автотракторную технику, является продление срока службы отработавших деталей, в том числе и чугунных. Сварка и наплавка чугуна широко применяется при ремонте вышедшего из строя различного оборудования. Однако она связана со значительными трудностями. Это связано с тем, что металл шва и околошовной зоны очень склонен к образованию твердых непластичных структур (ледебурита, мартенсита) и трещин вследствие больших скоростей охлаждения при сварке и наплавке, низкой прочности чугуна и почти полного отсутствия пластичности. Это осложняет решение многих вопросов, связанных с разработкой сварочных материалов (электродов, проволоки, флюсов и др.) для сварки чугуна.

Горьковский автомобильный завод широко применяет в двигателях своих автомобилей детали из чугуна. Одной из них является коленчатый вал.

Целью дипломного проекта является разработка технологического процесса восстановления чугунных коленчатых валов двигателя ЗМЗ – 53А позволяющего избежать выше перечисленных недостатков с возможностью применения в небольших ремонтных подразделениях МПС РФ.

Большую работу по изучению процессов, протекающих при сварке и наплавке чугуна, провели исследователи: Доценко Г. Н., Доценко Н. И., Луппиан Г. Э. и др. Работы этих исследователей использованы в дипломном проекте.


1. Литературный обзор и обоснование темы

дипломного проекта.


Описание изделия и технические

условия на ремонт чугунного коленчатого вала.


Чугунные коленчатые валы в автомобильных двигателях стали применять с 1960 года [3]. Высокопрочные чугуны по ГОСТ 7293-85 делятся на два класса: перлитные (ВЧ 45-0; ВЧ 50-1,5; ВЧ60-2) и ферритные (ВЧ 40-0; ВЧ 40-6). Большое применение нашли чугуны перлитного класса благодаря высокой прочности и износостойкости. Чугунный коленчатый вал двигателя ЗМЗ-53А
Рис. 1.1
В табл. 1.1 приведены сведения о прочностных свойствах высокопрочного, серого, модифицированного, ковкого чугунов и стали 45 [1].


Из табл. 1.1. видно, что основные механические свойства перлитного высокопрочного чугуна примерно такие же, как и у стали 45 и значительно выше, чем у других чугунов. При этом себестоимость отливок из высокопрочного чугуна в 2-2,5 раза ниже по сравнению с себестоимостью отливок из ковкого чугуна и поковок стали 45 [3].

Усталостная прочность.

Применение высокопрочного чугуна взамен стали 45, для изготовления коленчатых валов стало возможным благодаря его высокой усталостной прочности. Соотношение по усталостной прочности для стальных и чугунных образцов гладких и коленчатых валов одинаковой формы представлены в табл. 1.2 [2].



По данным табл. 1.2. у образцов гладких валов, изготовленных из высокопрочного чугуна, предел усталостной прочности на 18% меньше, чем у образцов изготовленных из стали 45; у коленчатых валов, изготовленных из тех же металлов, эта разница равна всего 4%. Объясняется это тем, что усталостные трещины вызывающие разрушения чугунных коленчатых валов, возникают в местах концентрации напряжений на галтелях, а высокопрочный чугун сохраняет присущую всем чугунам малую чувствительность к концентрации напряжений.


Износостойкость.

Высокую износостойкость высокопрочного чугуна с перлитной основой, не уступающую закаленной стали 45, большинство исследователей [4] объясняют наличием на его поверхности вскрытых графитовых включений, которые служат смазкой, а освободившиеся полости являются накопителями дополнительной смазки, необходимой при пуске и остановке двигателя.

При сравнении стальных и чугунных коленчатых валов в опубликованных работах [5,7] указывается, что при твердости стальных шеек HRC 56 их износостойкость равна износостойкости шеек чугунного коленчатого вала, при твердости шеек менее HRC 56 – меньше и при твердости более HRC 56 – больше износостойкости шеек чугунного коленчатого вала.

Технические условия на ремонт.

У коленчатых валов, поступающих на сборку, масляные каналы и грязеуловители должны быть тщательно очищены от шлама.

Шатунные шейки должны иметь диаметр – 60,00-0,013 мм.

Коренные – 70,00-0,013 мм.

Овальность и конусность шеек коленчатого вала не должны превышать 0,01 мм.

Чистота поверхности шеек должна соответствовать 5 квалитету Ra 0,2-0,4

Длина передней коренной шейки должна быть в пределах 30,45-30,90 мм.

Длина шатунной шейки 52,0-52,2 мм.

Радиусы галтелей шатунных шеек должны быть в пределах 1,2-2,0 мм, коренных 1,2-2,5 мм.

При вращении вала, установленного в призмы на крайние коренные шейки, биение не должно превышать:

а) для средней коренной шейки – 0,02 мм.

б) для шейки под распределительную шестерню – 0,03 мм.

в) для шейки под ступицу шкива вентилятора – 0,04 мм.

г) для шейки под задний сальник – 0,04 мм.

д) фланца по торцу – 0,04 мм.

Не параллельность осей шатунных и коренных шеек – не более 0,012 мм на длине каждой шейки.


Дефекты и неисправности чугунного коленчатого вала

Коленчатый вал является высоконагруженной деталью двигателя. В процессе эксплуатации двигатель машины подвержен различным нагрузкам, в том числе и неблагоприятным, это пуск двигателя в холодных условиях, не качественное смазочное масло, работа в запыленных условиях и т. д.

Вследствие этих факторов трущиеся части коленчатого вала подвергаются повышенному износу, что в свою очередь приводит к появлению на этих поверхностях надиров, сколов, микротрещин, раковин показанных на Рис. 1.2., которые могут привести к поломке коленчатого вала и выходу из строя всего двигателя.

Дефекты чугунного коленчатого вала


Рис. 1.2

Современные технологии восстановления

чугунных коленчатых валов.


В настоящее время чугунные коленчатые валы используются в двигателях автомобилей горьковского автомобильного завода, марки автомобилей ГАЗ-53А, ГАЗ-66, «Волга», «Газель». В некоторых автохозяйствах парк этих машин составляет до 80% от всего количества машин. Перестройка народного хозяйства и структурные изменения в нашей стране привели к разукрупнению автохозяйств, появлению мелких парков машин со смешанной формой собственности. Одной из задач, вставшей перед этими автохозяйствами, становится поддержание машин в рабочем состоянии при ограниченных финансовых ресурсах. По этому процесс восстановления изношенных деталей является на сегодняшний день актуальной задачей.

Существует несколько технологий восстановления чугунных коленчатых валов [3]:

Шлифовка под ремонтные размеры.

Один из часто применяемых способов восстановления работоспособности коленчатых валов. Преимущества этого способа в его технологической простоте. Из оборудования требуется наличие кругло шлифовального станка и типовой оснастки к нему. Но у этого способа имеется и ряд недостатков. Потеря взаимозаменяемости деталей, потребность в деталях (вкладыши) с ремонтными размерами, наличие складских площадей под них.

Вибродуговая наплавка в жидкости.

При этом способе качество наплавленного металла зависит от многих факторов и резко ухудшается при изменении режимов наплавки и химического состава электродной проволоки. Поэтому даже при хорошо отлаженном процессе восстановления на шейках чугунных коленчатых валов часто встречаются поры и трещины. Количество пор увеличивается по глубине слоя, поэтому восстановленные чугунные коленчатые валы шлифуют лишь до третьего ремонтного размера, а затем выбраковывают. Усталостная прочность чугунных коленчатых валов, восстановленных вибродуговой наплавкой в жидкости, снижается на 35-40% [6]. Однако благодаря двукратному запасу прочности в эксплуатации наблюдается незначительное количество их поломок. Но применение этого способа наплавки для восстановления чугунных коленчатых валов двигателей грузовых автомобилей из-за значительного снижения усталостной прочности становиться не приемлемым.

Вибродуговая наплавка в водокислородной среде [9].

При этом способе восстановления наплавленный металл имеет структуру троостита, переходящую в сорбитообразный перлит с твердостью слоя HRC 42-48. Такой металл по износостойкости уступает высокопрочному чугуну, тем не менее, коленчатые валы восстановленные этим способом, обеспечивают срок службы двигателей соответствующий пробегу автомобиля 50-60 тыс. км. Сведений об усталостной прочности чугунных коленчатых валов, восстановленных наплавкой в водокислородной среде, не имеется. В целом эксплуатационные свойства таких валов изучены не достаточно, но из-за низкой в сравнении с высокопрочным чугуном износостойкости наплавленного металла этот способ наплавки не может быть рекомендован к повсеместному использованию.

Однослойная наплавка под флюсом.

Этот способ наплавки исследовался в НИИАТе и КАЗНИПИАТе [3]. Для наплавки применяли проволоку разных марок, в том числе пружинную 2 класса ГОСТ 1071-81, ОВС, НП-30ХГСА, Св-08, Св-10Х13, Св-12ГС ГОСТ 792-67 и другие. Наплавку производили под флюсами АН-348А, ОСЦ-45, АН-15, АН-20 ГОСТ 9087-81 без примешивания и с примешиванием к флюсу графита, феррохрома, ферромарганца, ферромолибдена, алюминиевого порошка и других компонентов для получения наплавленного металла мартенситной структуры с твердостью HCR 56-62 без пор и трещин. Наплавку производили при разном шаге, прямой и обратной полярности, разных напряжений дуги и индуктивности сварочной цепи, скорости подачи электродной проволоки и вращения детали. Все разновидности однослойной наплавки под флюсом не дали положительных результатов. Наплавленный металл имел неоднородную структуру и твердость, содержал поры, трещины и шлаковые включения.

Двухслойная наплавка проволокой Св-08 под легирующим слоем флюса.

Этот способ наплавки разработан в НИИАТе [3]. Лучшие результаты из многочисленных вариантов двухслойной наплавки получаются при использовании малоуглеродистой проволоки Св-08 диаметром 1,6 мм и легирующего флюса АН-348А (2,5 части графита, 2 части феррохрома №6 и 0,25 частей жидкого стекла). Металл первого слоя имеет аустенитное строение и твердость HRC 35-38. Второй слой имеет мартенситное строение и твердость HRC 56-62 и содержит небольшое количество пор. Недостатком этого способа наплавки является образование большого количества трещин в наплавленном слое, вызывающих повышенный износ сопряженных вкладышей. Усталостная прочность чугунных коленчатых валов двигателей ЗМЗ 53-А, восстановленных двухслойной наплавкой под легирующим флюсом, снижается на 26- 28% т.е. меньше, чем при вибродуговой наплавке в жидкости. Наличие на поверхности шеек большого количества трещин не позволяет рекомендовать этот способ для широкого применения.

Двухслойная наплавка порошковой проволокой.

Схема процесса сварки порошковой проволокой.


Рис. 1.3

Этот способ разработан в Казахском научно-исследовательском институте автомобильного транспорта в 1966 году [3]. Наплавленный металл второго слоя имеет структуру мартенсита и твердость HRC 56-60. Существенным недостатком этого способа наплавки является образование пор, раковин и трещин в наплавленном слое. Износостойкость наплавленных шеек находится на уровне не наплавленных. Усталостная прочность восстановленных чугунных коленчатых валов снижается на 44%. В связи с выше перечисленными недостатками этот способ восстановления чугунных коленчатых валов рекомендовать нельзя.

Наплавка в среде углекислого газа.

Схема наплавки в среде углекислого газа.


Рис. 1.4

Способ наплавки разработан в НИИАТе [3]. Шейки чугунных коленчатых валов наплавлялись проволокой разных марок, в том числе Нп-2Х13, ОВС, Св-12ГС, Нп-30ХГСА, Св-08 и другими. Во всех случаях структура наплавленного металла была неудовлетворительной, в слое имелись поры и трещины. Наименьшее количество дефектов на поверхности шеек получается при наплавке проволокой Нп-2Х13, наплавленный металл при этом имеет структуру аустенита с карбидной сеткой и неравномерную по длине твердость, колеблющуюся от HRC 51-60. Износ шеек чугунных коленчатых валов, наплавленных в углекислом газе проволокой Нп-2Х13, был больше не наплавленных шеек. Усталостная прочность при этом способе снижается на 45-50%. Из-за указанных недостатков такую наплавку применять нецелесообразно.

Плазменная металлизация [10].

Схема плазменного напыления.


Рис.1.5

Среди новых технологических процессов большой интерес для процесса восстановления деталей автомобилей представляет способы нанесения металлопокрытий с использованием плазменной струи в качестве источника тепловой энергии. Наиболее перспективным способом восстановления деталей нанесением износостойких металлопокрытий является плазменное напыление с последующим оплавлением покрытия. При этом в металле оплавленного покрытия доля основного металла минимальна. Покрытие обладает высокой износостойкостью, без пор и трещин. Процесс является высокопроизводительным. Недостатком этого способа является высокие начальные капиталовложения в оборудование. В нынешних условия при отсутствии оборотных средств у предприятий этот недостаток не позволяет рекомендовать способ к повсеместному использованию.


Информация о работе «Технология восстановления чугунных коленчатых валов двигателей ЗМЗ-53А»
Раздел: Технология
Количество знаков с пробелами: 89890
Количество таблиц: 8
Количество изображений: 175

Похожие работы

Скачать
98140
13
0

... . На участке установлены кран-балки в первом и втором помещении, для перемещения тяжелых запасных частей, и самого двигателя в целом. 1.3.8 Организация ТО и ТР на участке Схема технологического процесса Т.О. и ремонта автомобилей При возвращении с линии автомобиль проходит через контрольно-технический пункт (КТП), где дежурный ме­ханик проводит визуальный осмотр автомобиля (автопоез­да) и ...

0 комментариев


Наверх