Войти на сайт

или
Регистрация

Навигация


3 бита < I = log(10) < 4 бита.

Таким образом, при необходимости представить десять разных десятичных цифр комбинациями двоичных цифр, каждую из них можно представить минимум тетрадой двоичных чисел. Большинство кодов десятичных цифр использует тетрады, хотя есть и коды, в которых для кодирования используется большее число битов.

Наиболее распространены двоично-десятичные коды, в которых для представления десятичных цифр используются позиционные методы кодирования. Так, если рассматривать четыре двоичных разряда тетрады как четырехразрядное двоичное число, то веса ее отдельных разрядов слева направо будут равны соответственно 8, 4, 2 и 1.

Поэтому первый двоично-десятичный код, который мы рассмотрим, обозначается как код “8421”. Его можно назвать кодом с естественными весами.

В этом коде каждая десятичная цифра представляется ее двоичным эквивалентом :

цифра 0 как 0000,

цифра 1 как 0001,

цифра 2 как 0010,

цифра 5 как 0101,

цифра 8 как 1000,

цифра 9 как 1001.

В то же время, имея четыре двоичных цифры, можно представить не 10, а 16 различных комбинаций. Таким образом, при использовании кода “8421” шесть комбинаций : 1010, 1011, ..., 1111 останутся неиспользованными, т.е. не будут изображать ни одной из десятичных цифр. Эти комбинации считаются запрещенными.

а) Коды с избытком

Кроме рассмотренной системы кодирования достаточно широко используются также так называемые коды с избытком. Рассмотрим группу кодов “8421” с избытком”.

Код “8421” с избытком W” строится по следующим правилам:

При кодировании десятичной цифры, к ней вначале прибавляют W, и затем полученное число представляют как двоичное в коде “8421”.

Значение W может быть равным 1, 2, 3, 4, 5 или 6. При любом значении избытка W шесть из шестнадцати комбинаций останутся неиспользованными. Только для разных избытков эти значения будут разными.

Пример. Рассмотрим код “8421” с избытком 3”.

а)Представим цифру 8 в данном коде.

Вначале увеличим 8 на 3. Получится 11.

Затем запишем 11 в коде “8421”. Получится 1011.

Число 1011 и есть представление цифры 8 в данном коде.

б)Восстановим цифру, которая изображается комбинацией 0101.

Вначале представим десятичное число, рассматривая комбинацию 0101, как его изображение в коде “8421”. Получится число 5.

Затем вычтем из него (из 5) избыток 3. Получится 2.

Это и есть искомый ответ: Комбинация 0101 изображает десятичную цифру 2 в коде “8421” с избытком 3”.

в)Восстановим цифру, которая изображается комбинацией 1110.

Восстановим десятичное число. Получится 14.

Вычтем из него избыток 3. Получится 11.

Поскольку 11 не является десятичной цифрой (это двухразрядное десятичное число), делаем вывод, что комбинация 1110 не изображает никакой десятичной цифры и является запрещенной.

б) Код “2421”

Кроме кодов с естественными весами разрядов применяются и другие. Одним из широко известных кодов является позиционный код, построенный с использованием тетрады двоичных цифр, веса которых слева направо равны соответственно : 2, 4, 2 и 1.

Представим коды цифр в таблице:

Цифра Код “2421” Цифра Код “2421”
0 0000 5 0101 или 1011
1 0001 6 0110 или 1100
2 0010 или 1000 7 0111 или 1101
3 0011 или 1001 8 1110
4 0100 или 1010 9 1111

Как видно из таблицы, ряд десятичных цифр могут быть представлены двумя не совпадающими двоичными комбинациями.

Например, комбинации 0100 и 0010 изображают цифру 2, комбинации 1010 и 0100 изображают цифру 4 и т.д. Отличительной особенностью данного кода является то, что в нем нет неиспользованных (запрещенных) комбинаций.

в) Код “2 из 5”

Данный код принадлежит к непозиционным кодам. Как и все непозиционные коды он определяется табличным способом. Его название отражает принцип построения кода: любая десятичная цифра представляется комбинацией из 5 двоичных цифр, в которой точно две цифры 1 и, следовательно, три цифры 0.

Представим таблицу одного из возможных вариантов для данного кода:

Цифра Код Цифра Код
0 11000 5 01010
1 00011 6 01100
2 00101 7 10001
3 00110 8 10010
4 01001 9 10100

Все остальные возможные комбинации, в которых число единиц не равно двум, являются запрещенными.

Также как и все коды на основе тетрады “8421”, последний код принадлежит к группе кодов, обладающих так называемыми диагностическими возможностями: Если известно, что некоторая комбинация должна изображать десятичную цифру, но попадает в область запрещенных, значит произошло искажение информации. Это свойство кодов активно используется в аппаратуре ЭВМ.

Для закрепления материала по переводу чисел из одной системы счисления в другую выполним несколько примеров.

Пример 1. Представить десятичное число 581 в двоичной, восьмеричной и шестнадцатиричной системах счисления.

Задачу можно решить с минимальными затратами усилий, выполнив, например, перевод в двоичную с/с по общему правилу (т. е. делением на основание 2 по правилам десятичной системы счисления), а затем из двоичной в восьми- и шестнадцатиричную системы счисления, используя упрощенные правила (кодированием соответственно тетрад и триад).

Пример 2. Представить десятичное число 993,761 в двоичной и шестнадцатиричной системах счисления.

Задачу можно решить таким же образом, как и предыдущую.

Пример 3. Представить шестнадцатиричное число 8363 в десятичной системе счисления.

Воспользуемся общим правилом. Для этого надо исходное число делить на 10 по правилам шестнадцатиричной системы счисления.

Что же это за правила? Это такие же правила сложения, вычитания, умножения и деления, что и в десятичной с/с, но над числами в позиционной шестнадцатиричной с/с.

Выполним перевод:

8 3 6 3 A

_(131)

(130) D 2 3 A

------- A

1 6 ---- 1 5 0 A  

_ (22) 3 2 _(21)

(20) _(50) (20) 2 1 A

----- (50) ----- _(33)

2 3 ----- 1 0 (30) 3

 _(35) 0 3 _ (16) -----

(30) (10) 3

----- -----

5 6

Искомое число в десятичной системе равно 33635.

Примечание. В круглых скобках записаны десятичные эквиваленты соответствующих шестнадцатиричных чисел. При этом в каждой паре чисел, расположенных друг под другом, первое число - частичное делимое, а второе - произведение делителя на частичное частное. Так запись (131) - эквивалент шестнадцатиричного делимого 83, а (130) - результат умножения делителя А (=10) на D (13).

1.4. Арифметика цифровых вычислительных машин

Как уже говорилось выше, практически все современные цифровые ЭВМ в качестве основной используют двоичную систему счисления. А все арифметические операции над двоичными числами можно свести к двум элементарным - сложению и сдвигу двоичных кодов, изображающих числа. Это позволит технически реализовать четыре действия арифметики в одном устройстве, называемом арифметико-логическом (АЛУ), используя одни и те же электрические схемы.

1.4.1. Представление чисел со знаками

При выполнении арифметических операций в ЭВМ применяют прямой, обратный и дополнительный коды.

Как уже говорилось выше, кодом называют такую запись числа, которая отличается от естественной и общепринятой. Так вот, в математике естественной формой записи числа является запись, при которой непосредственно перед старшей значащей цифрой числа помещается знак плюс(+) или минус(-), а длина записи определяется величиной числа (иначе, количество символов, использованных для записи разных чисел, как правило, не совпадает). В ЭВМ это не так. Одной из важнейших характеристик любой ЭВМ является длина слова в ней. Длина слова определяется количеством двоичных разрядов слова.

Поэтому в ЭВМ,  вне зависимости от величины числа, его код всегда имеет фиксированное количество двоичных цифр.

Кроме этого, в двоичном алфавите нет никаких символов, кроме цифр 0 и 1, и необходимы новые правила для указания знака числа. Суть этих правил сводится к тому, что знак плюс изображается цифрой 0, знак минус - цифрой 1, а цифра, изображающая знак всегда записывается самой первой в записи числа.

Обратите внимание, что код числа всегда содержит изображение его знака, в отличие от математической записи, которая позволяет опускать знак плюс при изображении положительного числа.

Так, код 011101, согласно этим правилам, изображает положительное (самая левая цифра - 0) двоичное число 11101.

Для того, чтобы более просто, и, следовательно, более экономично реализовать устройство АЛУ применяют несколько разных кодов чисел. Это связано с тем, что разные операции в ЭВМ более просто реализуются в разных кодах.

При выполнении арифметических операций в ЭВМ применяют прямой, обратный и дополнительный коды чисел.

Прямой код двоичного числа - это само двоичное число, в котором все цифры, изображающие его значение, записываются как в математической записи, а знак числа записывается двоичной цифрой.

При этом никакого символа, отделяющего эту цифру от старшей цифры, используемой при изображении его величины, не допускается. В таких случаях говорят о том, что назначение цифры в коде определяется его позицией.

Примеры.

Изображаемое число Код

·   +1101 (+13) 0000 1101 ( В примерах коды )

·   +1011101 (+93) 0101 1101 ( изображаются )

·   1101 (-13) 1000 1101 ( восемью цифрами )

Итак, прямой код почти не отличается от принятого в математике: для выявления абсолютной величины (модуля) числа, надо отбросить цифру, обозначающую его знак.

Однако применительно к операциям сложения и вычитания такой код неудобен: правила счета для положительных и отрицательных чисел различаются. Чтобы прояснить это обстоятельство, представим что длина кода (слова) равна 5 двоичным разрядам и запишем несколько чисел в нем:

Число -2 -1 0 +1 +2
Код 10010 10001 00000 00001 00010

Как видно из примера, при использовании прямого кода при переходе значения число через ноль, происходит скачкообразное изменение кода! Поэтому построение устройства, в котором должны выполняться такие действия арифметики, как сложение чисел с разными знаками и вычитание, становится сложной задачей.

Прямой код используется при хранении чисел в памяти ЭВМ, а также при выполнении операций умножения и деления.

Чтобы построить более простые схемы АЛУ предложены и активно применяются обратный и дополнительный коды.

Обратный код положительного числа совпадает с прямым, а при записи отрицательного числа все его цифры, кроме цифры, изображающей знак числа, заменяются на противоположные ( 0 заменяется на 1, а 1 - на 0).

Примеры записи.

Изображаемое число Код

·   +1101 (+13) 0000 1101 ( В примерах коды )

·   +1011101 (+93) 0101 1101 ( изображаются )

·   1101 (-13) 1111 0010 ( восемью цифрами )

Сопоставление этой записи с прямым кодом показывает, что непосредственно восстановить абсолютную величину (модуль) отрицательного числа непросто. Однако, в этом коде как к положительным, так и к отрицательным числам можно применять одни и те же правила, а операцию А-В можно заменить операцией сложения чисел А и “минус В”.

Посмотрим, как представляется последовательные числа при переходе через ноль:

Число -2 -1 0 +1 +2
Код 11101 11110 00000 00001 00010

Из примера видно, что переход через ноль также не выглядит естественным. Отмеченная особенность влечет за собой и следующее - в обратном коде ноль изображают две различающиеся комбинации: 00000 (+0) и 11111 (-0), что усложняет аппаратную реализацию операций.

Для восстановления прямого кода отрицательного числа из обратного кода надо все цифры, кроме цифры, изображающей знак числа, заменить на противоположные.

 Дополнительный код положительного числа совпадает с прямым, а код отрицательного числа образуется как результат увеличения на 1 его обратного кода.

Иными словами, процесс построения дополнительного кода отрицательного числа можно разбить на два этапа - построить обратный код, а затем из него построить дополнительный.

Проиллюстрируем это на примере.

Число -> - 101101

Прямой код -> 1101101

Обратный код -> 1010010

+1

Дополнительный -> 1010011

Примеры записи.

Изображаемое число Код

·   +1101 (+13) 0000 1101 ( В примерах коды )

·   +1011101 (+93) 0101 1101 ( изображаются )

·    1101 (-13) 1111 0011 ( восемью цифрами )

В дополнительном коде, в отличие от обратного, ноль изображается только одной комбинацией, и кроме этого, достаточно естественно получается переход через ноль, если иметь в виду, что любое число, большее другого на 1, получается при прибавлении к этому другому 1 по правилам сложения. Применительно к дополнительному коду это именно так, если принять к сведению, что разрядность слова фиксирована, и единица переноса из старшего разряда теряется, поскольку ее некуда записать:

2 -> 11101 + 1 = 11110

1 -> 11110 + 1 = 11111

 0 -> 11111 + 1 = (1)00000 (перенос отбрасывается)

+1 -> 00000 + 1 = 00001

+2 -> 00001 + 1 = 00010

Для восстановления прямого кода числа из дополнительного нужно полностью повторить (и именно в том же порядке!) действия, которые использовались при переводе из прямого в дополнительный код: сначала все цифры, кроме цифры, изображающей знак, заменить на противоположные, а затем прибавить 1.

Основным достоинством дополнительного кода является то, что в нем единообразно реализуются операции сложения чисел разных знаков (алгебраическое сложение), а операцию вычитания можно свести к операции сложения заменой знака вычитаемого на обратный. Вспомнив, что в памяти ЭВМ числа хранятся в прямом коде, станет ясно, что замена знака вычитаемого может быть выполнена чрезвычайно просто (заменой знака числа в прямом коде на обратный). Именно по указанной причине дополнительный код применяется чаще обратного.

1.4.2. Сложение и вычитание чисел

Сложение и вычитание чисел в обратном и дополнительном кодах выполняется с использованием обычного правила арифметического сложения многоразрядных чисел. Общей для этих кодов особенностью (и очень удобной особенностью) является лишь то, что при поразрядном сложении чисел разряды, изображающие знаки чисел рассматриваются как равноправные разряды двоичного числа, которые складываются друг с другом и с единицей переноса из предыдущего разряда числа по обычным правилам арифметики. Различия же обратного и дополнительного кодов связаны с тем, что делается с единицей переноса из старшего разряда (изображающего, как неоднократно говорилось, знак числа).

При сложении чисел в дополнительном коде единица переноса из старшего разряда игнорируется (теряется), а в обратном коде эту единицу надо прибавить к младшему разряду результата.

Пример 1. Сложить числа +12 и -5.

а) В обратном коде

Десятичная форма -> +12 -5

Двоичная форма -> +1100  -101

Прямой код -> 00001100 10000101

Обратный код -> 00001100 11111010

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 0

===============

(1) 0 0 0 0 0 1 1 0

 + 1 (Добавление 1 переноса)

==============

0 0 0 0 0 1 1 1

Итак, результат в обратном коде = 00000111.

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

а) В дополнительном коде

Десятичная форма -> +12 -5

Двоичная форма  -> +1100 -101

Прямой код  -> 00001100 10000101

Обратный код  -> 00001100 11111010

+1

Дополнительный код -> 00001100 11111011

Выполним сложение в столбик:

0 0 0 0 1 1 0 0

1 1 1 1 1 0 1 1

============

(1) 0 0 0 0 0 1 1 1

(Перенос игнорируется)

Итак, результат в дополнительном коде = 00000111.

Поскольку знаковый разряд равен 0, результат положительный, и, следовательно, запись кода числа совпадает с записью прямого кода. Теперь можно восстановить алгебраическую запись результата. Он равен +111 (незначащие нули отброшены), или в десятичной форме +7.

Проверка (+12-5=+7) показывает, что результат верный.

Умножение и деление двоичных чисел производится в ЭВМ в прямом коде, а знаки их используются лишь для определения знака результата. Также как и в математике, умножение сводится к операциям сложения и сдвига. Деление выполняется за счет комбинирования сдвигов, вычитаний (в этот момент могут использоваться обратный или дополнительный коды) и сложений.

1.5. Кодирование чисел в ЭВМ

В ЭВМ применяется чаще всего одна из двух форм представления чисел:

·   с фиксированной запятой;

·   с плавающей запятой.

Числа представляются в машинном слове, имеющем для конкретной ЭВМ всегда фиксированное число разрядов (битов). Это число является одной из важнейших характеристик любой ЭВМ и называется разрядностью машины. Разные разряды слова при кодировании команд и данных имеют несовпадающие функциональные назначения. При рассмотрении их функций используют также термин “разрядная сетка машины”.

1.5.1. Числа с фиксированной запятой

В числах с фиксированной запятой положение запятой в разрядной сетке машины заранее обусловлено для всех чисел раз и навсегда. Поэтому в коде числа запятая никак не обозначается. В большинстве машин место запятой подразумевается после последней цифры (справа от нее). А такие числа - целые. При необходимости представлять дробные числа с использованием формы с фиксированной запятой программист должен алгоритмическими средствами обеспечить использование множителя, выполняющего функцию масштабирования (масштабного множителя).

Определим диапазон представимых чисел.

Вначале рассмотрим пример, в котором положим, что мы имеем дело с десятичной (а не двоичной) системой счисления, и что для записи абсолютной величины числа (без учета его знака) в нашем распоряжении имеется шесть разрядов.

Тогда максимальное (по абсолютной величине) целое будет равно 999999 или иначе 10**6-1. А поскольку в разрядной сетке машины для записи знака числа всегда предусматривается один разряд, то для нашего случая диапазон представимых чисел составит все целые числа, начиная от

-999999 до +999999, а количество различных целых - 2*10**6-1.

В двоичных ЭВМ их разрядность определяется числом разрядов в слове. Так, если разрядность некоторой ЭВМ равна 16, то один разряд отводится для кодирования знака числа, а остальные 15 - для записи его величины. При этом максимальное по модулю целое значение в машинном слове будет равно 2**15-1, что составит 32767. (Посмотрите диапазон целых (integer) чисел в языке программирования Паскаль для ПЭВМ типа IMB PC).

В общем случае, если разрядность машины составляет N битов. Тогда максимальное по абсолютной величине целое число, которое можно в ней записать, будет равно 2**(N-1)-1.

Особенности арифметических операций над числами

Поскольку (если положение запятой фиксировано после последней цифры числа) числа с фиксированной запятой - целые, они представляются в машине точно. А потому операции сложения, вычитания и умножения корректны всегда: как операнды, так и результат - целые числа.

Единственной особенностью, о которой необходимо упомянуть, является ситуация, которая носит название “переполнение разрядной сетки” (FixedOverflow - переполнение с фиксированной запятой) и которая возникает, когда результат умножения превышает максимально возможное для данной разрядности значение. Эта ситуация считается в ЭВМ исключительной. При ее возникновении записать получившееся значение невозможно. В этом случае устанавливается в “1” специальный флаг переполнения, старший бит результата (бит переноса из старшего разряда слова) теряется, а в качестве результата выдается искаженное число. Описываемая ситуация не считается критической, и после окончания данной операции вычисления продолжаются. Таким образом, программист сам должен позаботиться о корректной реакции на возникновение переполнения, используя для обнаружения указанной ситуации содержимое флага переполнения.

Иначе обстоит дело с операцией деления. При делении целого числа на другое целое результат совсем не обязательно должен быть целым. А поскольку и результат должен быть представлен целым числом, возникает коллизия, которую проиллюстрируем примером:

5 / 2 = 2

5 / 3 = 1

5 / 4 = 1

5 / 5 = 1

5 / 6 = 0

И в отличие от умножения, с позиций ЭВМ никаких ошибок при этом нет, и никакие флаги не устанавливаются, а указанные особенности деления целых должны учитываться программистом самостоятельно. В ряде языков программирования эти особенности отражаются набором допустимых арифметических операций. Так, например, в языке Паскаль для целых (integer) определены две операции:

div - целочисленное деление, при котором в качестве результата представляется целая часть частного,

mod - остаток от деления целых (деление по модулю), при котором в качестве результата представляется целый остаток от деления, по абсолютной величине меньший делителя.

Примеры:


Информация о работе «Арифметические основы ЦВМ»
Раздел: Компьютерные науки
Количество знаков с пробелами: 46438
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
95849
35
321

... 100 10 1001=(9)10 100 11,1=(3,5)10 00 110 00 100 001 100 000 100 10 0 10 00 Таким образом, выполнение арифметических операций в двоичной системе счисления достаточно просто. Особенно просто выполнять операции сложения, вычитания и умножения. Благодоря этому, применение двоичной системы в вычислительных ...

Скачать
49215
3
4

... . Чем глубже будущий инженер овладел основами знаний своей специальности, приобрел опыт и мастерство, выработал свою точку зрения, тем эффективнее будет его работа Обучение   Наконец, выбор специальности сделан. Теперь перед студентом стоит конкретная задача - стать хорошим специалистом. Современный специалист - это человек высокой культуры, широкой эрудиции. Процесс обучения в вузе ...

Скачать
12679
0
0

... множеств (связанные, например, с выполнением операций), но указанные выше особенности - основные. Различия в представлении чисел в обычной и в машинной (n-разрядной) арифметике ограничивают как “арифметические возможности” компьютера, так и “компьютерные возможности” арифметики, математики, использование математических методов, алгоритмов в компьютерах. Нужно всегда иметь в виду, что точность в ...

Скачать
34504
2
0

... этих кодов операция вычитания (или алгебраического сложения) сводится к арифметическому сложению. В результате упрощаются арифметические устройства машин. Для представления двоичных чисел в машине применяют прямой, обратный и дополнительный коды. Во всех этих кодах предусматривается дополнительный разряд для представления знака числа, причем знак «+» кодируется цифрой 0, а знак « — » - цифрой 1. ...

0 комментариев


Наверх