3.4. Приемо-передатчик данных.

В качестве приемо-передатчика данных используется восьмиканальный

двунаправленный формирователь с тремя состояниями на выходе КР1533АП6.

Направление передачи данных определяется наличием сигналов чтения или записи на

шине и работой дешифратора адреса. Если присутствует сигнал чтения, то данные из

регистров выбранного дешифратором порта поступают на шину. Если присутствует

сигнал записи, то данные с шины записываются в регистры выбранного дешифратором

порта.

3.5. Регистр команд управления.

Регистр команд управления объединяет три порта с адресами 300Н, 301Н и 302Н. В

нашей схеме регистр действует в одном направлении: процессор в виде

параллельного 8 разрядного кода посылает команду управления передатчиком,

которая записывается в один из портов. В качестве портов регистра используются 3

микросхемы серии КР1533ИР22 (восьмиразрядный регистр на триггерах с защелкой с

тремя состояниями на выходе). Таким образом, регистр способен хранить

24-разрядное число.

3.6. Исполнительное устройство.

Команды управления передатчиком из регистра хранения подаются на исполнительное

устройство через схему оптоэлектронной развязки. Исполнительное устройство – это

блок реле, который непосредственно управляет передатчиком. Каждый разряд

регистра управляет отдельным реле, что позволяет подавать на передатчик до 24

команд одновременно.

3.7. Блок электропитания.

Исполнительное устройство питается от автономного источника электропитания.

Источник представляет собой трансформатор, с одной первичной и двумя вторичными

обмотками, двумя выпрямителями, на основе мостовых схем и двумя стабилизаторами

непрерывного действия (НКСН), рассчитанными на напряжения +12 В и +5 В

соответственно. Однофазная мостовая схема из всех двухполупериодных схем

выпрямления обладает наилучшими технико-экономическими показателями. Данный

класс устройств получил широкое распространение для питания различной

радиоэлектронной аппаратуры. Это объясняется схемной простотой, высоким

качеством выходного напряжения возможностью миниатюризации методами современной

технологии. НКСН могут выполняться с последовательным, параллельным или

комбинированным включением регулирующего элемента. В данной схеме используется

последовательное включение регулирующего элемента. Стабилизированный источник

питания вырабатывает два выходных напряжения +5В и +12В с малым уровнем

пульсаций. Напряжение +12 В используется для питания элементов исполнительного

устройства, а напряжение + 5 В – для дальнейшей модернизации и расширения

системы.

3.8. Работа системы.

Работа системы происходит следующим образом. Программа задает временные

интервалы запуска той или иной команды управления передатчиком и адреса портов

ввода-вывода, в которые записываются эти команды. Процессор по заданной

программе в определенные моменты времени обращается к порту, выставляя на линиях

A0 – A9 его адрес 300Н (либо 301Н и 302Н), а на линиях D0 – D7 команду

управления.

Одновременно с этим при высоком уровне на линии сигнала IOR приемопередатчик

переключается на передачу данных от шины к регистру. При этом инициируется

сигнал AEN, разрешающий дешифрацию адреса, и сигнал IOW, по которому происходит

запись команды в регистр хранения команд. Запись производится только в том

случае, если схема дешифрации определила, что обращение происходит именно к

выбранному порту и активизировала его. Таким образом, за 3 цикла обращения можно

записать в регистр хранения команд 24-разрядное число. Далее сигналы с регистра

поступают на оптоэлектронные ключи, которые, в зависимости от высокого или

низкого уровня на входах, включают или выключают реле управления передатчиком.

Передатчик HF1000 состоит из двух блоков: возбудителя и усилителя мощности,

каждый из них имеет входы для внешнего управления, которые подключаются к реле

исполнительного устройства с помощью кабеля, проложенного от эфирной студии в

учебном корпусе УрКСИ к аппаратной на 9 этаже здания по Мельникова - 52а. В

данной системе используется пока только три сигнала:

включение усилителя мощности;

отключение усилителя мощности;

блокировка несущей частоты возбудителя.

достаточно для поддержания необходимых режимов работы радиостанции:

режим "включено";

режим "выключено";

дежурный режим, когда передатчик включен и готов к немедленной трансляции

передачи в эфир, но излучение несущей заблокировано.

Таким образом, настроив программу управления, можно запрограммировать расписание

работы радиостанции на длительный период времени, вплоть до года.

При этом оператор всегда может вмешаться в работу программы и оперативно внести

изменения, а также производить переключения в ручном режиме. Структурная схема

всей системы приведена на рис. 6.

Структурная схема размещения оборудования системы ДУ

радиостанцией.

Рис 6.

4. ЭЛЕКТРИЧЕСКИЙ РАСЧЕТ ИСТОЧНИКА ЭЛЕКТРОПИТАНИЯ.

4.1. Исходные данные:

1. Напряжение питающей сети U1=220 В; 2. Частота тока в сети fc=50 Гц; 3.

Величины относительных отклонений напряжения сети амин=0,005 В, амакс=0,005 В;

4. Номинальное значение выходного напряжения стабилизатора Uвых=12 В; 5. Пределы

регулировки выходного напряжения стабилизатора Uвых.мин=11,94 В, Uвых.макс=12,06

В; 6. Максимальный и минимальныйтоки нагрузки стабилизатора Iн.мин=0,95 А,

Iн.макс=1,05 А; 7. Коэффициент стабилизации по входному напряжению Кст=500; 8.

Внутреннее сопротивление стабилизатора ri<=0,01 Ом; 9. Амплитуда пульсации

выходного напряжения стабилизатора Uвыхm1=1мВ; 10. Пределы изменения температуры

окружающей среды Qокр.мин=+400С, Qокр.макс=0 0С; 11. Температурный коэффициент

стабилизатора напряжения ?=+-5мВ/0С.

4.2. Расчет силовой части стабилизатора.

Выбираем схему стабилизатора с операционным усилителем, в качестве схемы

сравнения.

4.2.1. Задаемся величиной тока, потребляемого схемой стабилизатора

Iвн=0,02 А, и определяем максимальный ток через регулирующий транзистор Iк4макс,

А:

Iк4макс=Iн.макс+Iвн, (1)

Iк4макс=0,02+1,05=1,07 А;

4.2.2. Найдем минимальное напряжение на входе стабилизатора U01мин, В

U01мин=Uвых.макс+Uкэ4мин+U01м1, (2)

где Uвых.макс- наибольшее выходное напряжение стабилизатора;

U01м1-амплитуда пульсаций на входе стабилизатора

U01м1=(0,05-0,1)*(Uвых.макс+Uкэ4мин), (3)

где Uкэ4мин=(1,5-2)В, для кремниевых транзисторов U01м1=0,1*(12,06+2)=1.406 В

U01мин=12,06+2+1,406=15,466 В

Определим номинальное и максимальное напряжение на входе стабилизатора: U01,

U01макс , В

U01=U01мин/(1-амин) (4)

U01=15,466/(1-0,005)=15,54 В

U01макс=U01*(1+амакс) (5)

U01макс=15,54*(1+0,005)=15,61 В

Определяем ориентировочную величину внутреннего сопротивления выпрямителя r0,

Ом:

r0=(0,05-0,15)*U01/Iнмакс, (6)

r0=(0,05-0,15)*15,54/1,05=1,48 Ом

Определим максимальное напряжении на входе стабилизатора при минимальном токе в

нагрузке U01макс.макс, В

U01макс.макс=U01макс+(Iнмакс-Iнмин)*r0 (7)

U01макс.макс=15,61+(1,05-0.95)1,48=15,758 В

Определим максимальное напряжение на переходе К-Э VT4,В:

Uкэ4макс=U01макс.макс+Uвых.мин (8)

Uкэ4макс=15,758-11,94=3,81 В

Найдем величину максимальной мощности, рассеиваемой на регулирующем транзисторе

VT4, Рк4,Вт:

Рк4=(U01макс-Uвых.мин)*Iк4макс (9)

Рк4=(15,61-11,94)*1,07=3,92 Вт

По величинам Uкэ4макс=3,81 В, Iк4макс=1,07 А и Рк4=3,92 Вт выбираем тип

регулирующего транзистора:

Выбираем транзистор КТ-801А.

Справочные данные транзистора КТ-801А.

Таблица 1

Uкэ4макс, ВIк4макс, АРк4, ВтQпер.макс,0СRт,0С/Вт

802515020

4.2.3. Определим величину предельной мощности, которую может рассеять

выбранный транзистор без радиатора Рк4макс, Вт:

Рк4макс=(Qпер.макс-Qокр.макс)/Rт, (10)

где Qпер.макс- максимальная температура коллекторного перехода, Вт;

Qокр.макс- максимальная температура окружающей среды, 0С;

Rт- тепловое сопротивление транзистора, 0С/Вт

Рк4макс=(150-40)/85=5,5 Вт

Поскольку Рк4<Рк4макс (5<5,5-верно), то радиатор не нужен.

4.2.4. Определим максимальный и минимальный токи базы VT4 Iб4мин,

Iб4макс, мА

Iб4мин=Iнмин/h21э4макс, (11)

где h21э4макс, h21э4мин- справочные данные транзистора

Iб4мин=0,95/50=19 мА

Iб4макс=Iнмакс/h21э4мин (12)

Iб4макс=1,05/13=80 мА

4.2.5. Найдем величину максимального тока эмиттера транзистора VT3

Iэ3макс, мА:

Iэ3макс=Iб4макс (13)

Iэ3макс=80 мА

Iэ3макс=Iк3макс

Uкэ3макс=Uкэ4макс (14)

Uкэ3макс=3,81 В

4.2.6. Найдем величину максимальной мощности, рассеиваемой на транзисторе

VT3, Рк3,Вт:

Рк3=Iк3макс*Uкэ3макс (15)

Рк3=0,08*3,81= 0,305 Вт

4.2.7. По величинам Uкэ3макс=3,81 В, Iк3макс=0,08 А и Рк3=0,305 Вт

выбираем тип транзистора VT3:

Выбираем транзистор КТ-603Е

Справочные данные транзистора КТ-603Е.

Таблица 2

Uкэ3макс, ВIк3max, АРк3, ВтQпер.макс,0СRт,0С/Вт

100,30,5120200

4.2.8. Определим величину предельной мощности, которую может рассеять

выбранный транзистор без радиатора Рк3макс, Вт:

Рк3макс=(Qпер.макс-Qокр.макс)/Rт, (16)

Рк3макс=(120-40)/200=0,4 Вт

Поскольку Рк3 < Рк3макс (0,305<0,4- верно), то радиатор не нужен.

4.2.9. Определим максимальный и минимальный токи базы транзистора VT3

Iб3мин, Iб3макс, мА

Iб3мин=Iнмин/h21э4макс*h21э3макс (17)

где h21э4макс, h21э3макс- справочные данные транзистора

Iб3мин=0,95/50*200=0,095 мА

Iб3макс=Iк3макс/h21э3мин (18)

Iб3макс=0,08/60=1,3мА

Так как ток базы транзистора VT3 меньше выходного тока операционного усилителя,

то число транзисторов входящих в состав составного транзистора равно 2.

4.2.10. Рассчитаем резистор R7, Ом

R7=(U01мин-Uвых)*h21э3мин/Iн (19)

R7=(15,46-12)*100/1=1500 Ом

4.2.11. Найдем мощность, рассеиваемую на резисторе РR7, мВт:

РR7= U201макс/4*R7 (20)

РR7=15,542/4*1500=40 мВт

В качестве R7 выбираем ОМЛТ-0,125-1,5 кОм.

4.2.12. Рассчитаем антипаразитный конденсатор С5, мкФ:

С5>=3Tср/R7 (21)

где Tср- постоянная времени С5R7, мкC

Tср=1/2*П*2*fc (22)

Tср=1/2*3,14*100=1,6 мкС

С5>=4,8*10-3/1500=3,2 мкФ

В качестве С5 выбираем конденсатор К50-6 3,3 мкФ.

4.2.13. Расчет схемы сравнения и усилителя постоянного тока. Определим

величину опорного напряжения Uоп, В:

Uоп<=Uвых.мин – (2-3)В (23)

Uоп<=11,94-3=8,94 В

Выбираем Uоп=8,9 В, в качестве источника опорного напряжения выбираем

стабилитрон Д818Б:

Справочные данные стабилитрона Д818Б

Таблица 3

UСТ.макс, ВUСТ.мин, ВIст.мин, мАIст.макс, мАrст, Омаст,%/0С

96,7533325-0,02

4.2.14. Рассчитаем напряжение на выходе операционного усилителя Uвых.оу,

В

Uвых.оу=Uвых. – Uоп (24)

Uвых.оу =12-8,9=3,1 В

4.2.15. Зная ток базы составного транзистора Iб3=1мА определим ток на

выходе ОУ I оу, он должен быть в (2,5-4) раза больше Iб3:

I оу=3 мА

4.2.16. Рассчитаем величину защитного резистора R8, Ом:

R8=Uвых.оу/I оу (25)

R8=3,1/3*10-3=1033 Ом

Принимаем R8=1кОм

4.2.17. Найдем мощность рассеиваемую на резисторе РR8, мВт:

РR8=Uвых.оу*I оу (26)

РR8=3,1*3*10-3=9,3 мВт

В качестве R8 выбираем ОМЛТ-0,125-1кОм.

4.2.18. Рассчитаем величину резистора R9 ,Ом:

R9=(Uвых. мин.-Uст.макс)/Iст.мин, (27)

где Uст.макс ,Iст.мин- справочные данные стабилитрона см. таблицу 3

R9=(11,94-9)**/3*10-3=980 Ом

Принимаем R9=1кОМ

4.2.19. Найдем мощность рассеиваемую на резисторе РR9, мВт:

РR9=(Uвых. макс.-Uст.мин)2/R9 (28)

РR9=(12,06-6,75)2/1000=28 мВт

В качестве R9 выбираем ОМЛТ-0,125-1кОм.

4.2.20. Определим максимальный ток через стабилитрон и убедимся, что его

величина не превышает предельно допустимого значения Iст10.макс, мА:

Iст10.макс=(Uвых. макс.-Uст.мин)/R9 (29)

Iст10.макс=(12,06-6,75)/1000=5,3 мА

Iст210макс=5,3 мА < Iст.макс=33 мА –верно

4.2.21. Зададимся током делителя Iдел=0,5 мА

4.2.22. Определим минимальный и максимальный коэффициент передачи

делителя ?мин и ?макс:

бмин =Uст.мин/Uвых. макс (30)

бмин =6,75/12,06=0,56

бмакс = Uст.макс/Uвых. мин (31)

бмакс =9/11,94=0,75

4.2.23. Определим суммарное сопротивление делителя Rдел, Ом:

Rдел=Uвых. мин/Iдел (32)

Rдел=11,94/0,5*10-3=23880 Ом

4.2.24. Рассчитаем величину резистора R12 ,Ом:

R12<= бмин *Rдел (33)

R12<=0,56*23880=13370 Ом

Принимаем R12=13кОМ

4.2.25. Найдем мощность рассеиваемую на резисторе РR12, мВт:

РR12= R12*I дел2 (34)

РR12=13000*(0,5*10-3)2=32 мВт

В качестве R12 выбираем ОМЛТ-0,125-13кОм.

4.2.26. Рассчитаем величину резистора R10 ,Ом:

R10<=(1- бмакс)*Rдел (35)

R10<=(1-0,75)*23380=5840 Ом

Принимаем R10=5600 Ом

4.2.27. Найдем мощность рассеиваемую на резисторе РR10, мВт:

РR10=R10*I дел2 (36)

РR10=5600*(0,5*10-3)2=14,2 мВт

В качестве R10 выбираем ОМЛТ-0,125-5,6 кОм.

4.2.28. Рассчитаем величину переменного резистора R11, Ом:

R11=Rдел-R10-R12 (37)

R11=23880-5600-13000=5280 Ом

4.2.29. Найдем мощность, рассеиваемую на переменном резисторе РR11, мВт:

РR11=R11*I дел2 (38)

РR11=5180*(0,5*10-3)2=2,6 мВт

В качестве R11 выбираем СП5-15-6,8 кОм

4.2.30. Расчет термокомпенсации. Определим номинальное значение

температурного коэффициента стабилитрона ?ст2, мВ/0С:

Хст2=10* аст2* Uст2, (39)

где аст2-справочный параметр стабилитрона;

Uст2=(Uст.макс+ Uст.мин)/2; (40)

Uст2=(9+6,75)/2=7,87 В;

Хст2=10*(-0,02)*7,87=-1,57 мВ/0С


Информация о работе «Устройство дистанционного управления»
Раздел: Информатика
Количество знаков с пробелами: 52202
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
8830
2
0

... клавиша. Управление ИК диодом осуществляется с помощью транзистора VT1, в базу которого дается большой ток для его полного открывания[3]. 2 Обоснование выбора сопряжения с ПК Устройство дистанционного управления освещением может быть подключено к персональному компьютеру через инфракрасный порт, настроенный на частоту 36 КГц. Компьютер также может заниматься управлением освещения через инфра- ...

Скачать
114489
21
10

... : следить за загрязненностью и загазованностью производственных помещений, поддержание температурно-влажностного режима. Заключение В данном дипломном проекте, который называется “охранная система с дистанционным управлением” разработано устройство, предназначенное для охраны материальных ценностей от пожара и проникновения злоумышленников. Устройство подключается к персональному компьютеру ...

Скачать
14180
1
12

... Характеристики фотодиода ФД263-01 Введение   Привычной частью современного телевизора, видеомагнитофона, спутникового тюнера или музыкального центра является пульт дистанционного управления (ДУ) на ИК-лучах. Таким пультом можно также управлять и освещением с помощью небольшой приставки. При этом нажимается одна из кнопок (редко используемых). Данное устройство позволяет с любого пульта ДУ на ...

Скачать
15444
0
0

... (магнитные защелки, задвижки и т.п.) закрывающих элементов с возможностью перемещения их вручную при открывании или закрывании в экстремальных условиях Рассмотрим требования к основным компонентам СКУД. Требования к устройствам идентификации   Считыватели должны обеспечивать надежное считывание кода с идентификаторов преобразование его в электрический сигнал и передачу на контроллер. ...

0 комментариев


Наверх