ДИПЛОМНЫЙ ПРОЕКТ

студента специальности ТПР

Попырко Игоря Алексеевича

шифр 1-96-25

1999

 



Министерство образования Украины

Донецкий горно-экономический техникум

Специальность Технология подземной разработки полезных ископаемых

К защите допущен

Зав. отделением ТПР

___________ В. В. Елисеенко

___________

Рациональная отработка пласта k5 в условиях

ГХК шахта “Краснолиманская”

Пояснительная записка

ДП 0309. 00. 00. 17. ПЗ

Руководитель проекта

___________ Л. Р. Резниченко

___________

Консультант

___________ И. И. Васильева

___________

Консультант

___________ В. И. Жуков

___________

Выполнил

студент группы 2 ТПР-96

___________ И. А. Попырко

17.05.99

1999


СОДЕРЖАНИЕ

Введение

1 Краткая характеристика шахты

1.1 Общие сведения о шахте

1.2 Краткая геологическая характеристика месторождения

1.3 Вскрытие и подготовка шахтного поля

1.4 Система разработки на проектируемом участке

1.5 Технология ведения очистных работ (базовый вариант)

2 Технологическая часть

2.1 Анализ существующей технологии очистных работ на шахте по данному пласту и задач дипломного проектирования

2.2 Исходные данные

2.3 Способ подготовки шахтного поля

2.4 Выбор системы разработки

2.5 Выбор технологии и оборудования

2.6 Крепление сопряжения лавы с прилегающими выработками

2.7 Выбор длины лавы

2.8 Определение технических данных участка

2.9 Расчет расхода воздуха для проветривания очистной выработки

3 Электротехническая часть

3.1 Выбор напряжений

3.2 Расчет электрических нагрузок и выбор участковой трансформаторной подстанции

3.3 Расчет кабельной сети напряжением до 1 кВ

3.4 Выбор аппаратуры защиты и управления


6

8

8

10

14

15

16

20

20

21

21

24

27

45

46

47

50

53

53

53

55

57


4 Правила техники безопасности при ведении очистных работ, охрана труда, противопожарная защита

4.1 Правила техники безопасности при ведении очистных работ

4.2 Охрана труда

4.3 Противопожарная защита

5 Организация и технология работ

5.1 Расчет и состав работ по процессам на цикл

5.2 Расчет комплексной нормы выработки и расценки

5.3 Расчет численности суточной комплексной бригады ГРОЗ и рабочих лавы

5.4 Составление графика выходов на сутки

5.5 Расчет производительности труда

5.6 Расчет продолжительности рабочих процессов. Составление планограммы работ на сутки

5.7 Технология выемки угля в лаве, крепление и управление кровлей

6 Экономическая часть

6.1 Расчет себестоимости одной тонны угля по элементу “Расходы на оплату труда”

6.2 Расчет себестоимости одной тонны угля по элементу “Отчисления на государственное социальное страхование”

6.3 Расчет себестоимости по элементу “Материальные затраты”

6.4 Расчет себестоимости по элементу “Амортизация основных фондов”

6.5 Калькуляция себестоимости одной тонны угля

6.6 Сравнительная таблица технико-экономических показателей

6.7 Расчет показателей экономической эффективности


60

60

62

63

64

64

66

71

72

72

73

75

81

81

85

87

91

92

93

93



7 Специальная часть

7.1 Шахтная пыль

7.2 Оценка выемочного комбайна по пылевому фактору

7.3 Выбор комплекса мероприятий по борьбе с пылью

7.4 Предварительное увлажнение угля в массиве

7.5 Орошение при работе выемочного комбайна

7.6 Орошение на погрузочном пункте очистного забоя

7.7 Обеспыливание вентиляционной струи

7.8 Расчет расхода воды и смачивателя

8 Заключение

Список использованных источников


95

95

95

96

98

99

101

101

103

104

105


Введение

Угольная промышленность Украины является основой топливно-энергетического комплекса страны. Уголь используется в теплоэнергетике, металлургической и химической промышленностях и для коммунальных нужд.

В условиях перехода страны к рыночной экономике требуется стабильность работы угольной промышленности и наращивания угледобычи. Этому будет способствовать улучшение условий труда шахтеров, оплаты труда, повышения производительности труда и снижение себестоимости готовой продукции, а также улучшение качества угля и увеличение объема его обогащения.

Основным угледобывающим регионом страны является Донбасс. В связи со значительной глубиной горных работ в бассейне, добыча угля сопровождается сложными горно-геологическими условиями, что вызывает высокую трудоемкость работ при низкой производительности труда.

В настоящее время возрастает потребность в увеличении уровня добычи угля при снижении его себестоимости.

Важнейшей задачей угольной промышленности является дальнейшее техническое перевооружение и реконструкция шахт Донбасса на базе передовой техники и технологии добычи угля и проведения горных выработок, а также внедрение новых прогрессивных типов и видов крепи и новых способов поддержания кровли. Для этих целей необходимо перевооружение угольных шахт; разработка и освоение производства машин для комплексной механизации очистных работ и проведения горных выработок, в том числе комплексов оборудования для выемки тонких угольных пластов и пластов со сложными горно-геологическими условиями, проходческих комбайнов и комплексов для проведения выработок по более крепким породам; внедрение очистных агрегатов для ведения работ без постоянного присутствия людей в забоях; обеспечение прироста объема добычи в основном за счет повышения производительности труда.

Высокий уровень механизации, интенсификации и концентрации горных работ, применение все более производительной и дорогостоящей техники, необходимость оперативного принятия управленческих решений для обеспечения достаточной организационной надежности функционирования производственного процесса, требуют решения ряда сложных задач, связанных с обоснованием экономически целесообразного резервирования производственных мощностей, разработки новых методов и принципов организации труда и производства с учетом передового опыта.

Целью дипломного проектирования является на основе анализа существующей технологии и организации производства внедрить ряд мероприятий, которые позволят улучшить технико-экономические показатели и сделать экономическую оценку предложенного варианта.

1 краткая характеристика шахты 1.1  Общие сведения о шахте

Шахта "Краснолиманская" построена на пластах l7 и l3 и сдана в эксплуатацию в 1950 году с рабочим горизонтом 210 м и проектной мощностью 1200000 м тонн в год.

Поле шахты “Краснолиманская” расположено в центральной части Красноармейского горнопромышленного района.

По административному делению эта площадь входит в Красноармейский район Донецкой области Украины.

Поле шахты занимает выгодное геолого-географическое положение. Вблизи располагаются крупные действующие шахты района: шахта им. А. И. Стаханова, шахта “Родинская”, шахта “Центральная”. В непосредственной близости расположены рабочие поселки шахт и села: Красное, Федоровка, Родинское, Димитров. В 15 км северо-западнее расположен город Доброполье, а в 10 км южнее – город Красноармейск. Нед­ра шахты подчинены ПО "Красноармейскуголь".

Границы оцениваемой площади, принятые в соответствии с протоколом технического совещания производственного объединения “Красноармейскуголь”, следующие:

на северо-западе – по всем пластам линия сечения пластов Центральным надвигом;

на востоке (нижняя граница) – по пластам m26, m24, m04, l8, l18, l6, l5, l2, l1, kн8, k7 – изогипса – 650;

по пластам l7, l4, l3, kв5 – изогипса – 825;

на западе (верхняя граница) – по пластам m2, m24, m04 – линия сечения пластов Глубокоярским сбросом до пересечения на юге с изогипсой – 650 м;

по пластам l18, l­8, l7, l6, l5, l4, l3, l2, l1, kв8 – выхода пластов на поверхность карбона;

по пласту k7 – изогипсе – 300 м;

по пласту k5 – нижняя граница шахты “Родинская”;

на юге – общая граница с шахтой “Центральная”.

Размеры шахтного поля следующие:

по простиранию –6,0 км;

по падению – 9,6 км.

Площадь шахтного поля составляет 57,5 км.

Рельеф представляет собой слабохолменную равнину, изрезанную балками и речками. Максимальные отметки рельефа +200 м, приурочены к водораздельным пространствам, минимальные +95 м к долине реки Казенный Торец. Общее понижение местности наблюдается в направ­лении уклона реки Казенный Торец. С левого берега реки совпадают балки Осиноватая, Водяная, Дальний Яр, Глубокий Яр, а с правого ­балка Заячья и Чаплинская. Склоны балок от пологих до крутых 20-30.

Климат района умеренно - континентальный. Многолетняя средняя температура воздуха от +7 до +8. Максимальная глубина промерза­ния почвы 75-120 см. Преобладают ветры восточного направления.

Поле шахты занимает выгодное экономическое и промышленное положение. Шахта и шахтные поселки связаны с железнодорожной магистралью Ростов-Киев.

Водоснабжение шахты и городов осуществляется за счет водовода Карловка - Красноармейск, а также артезианской скважины в селе Федоровка.

Источником энергоснабжения служит Кураховская ГРЭС. Основными потребителями углей являются коксохимзаводы и электростанции.

Промышленные запасы на 1 января 1999 года составили 87324000 тонн.

Проектная мощность шахты в 1958г по вводу в эксплуатацию была при­нята 1200 тысяч тонн в год.

Проектная производственная мощность шахты составляет 2100000 тонн. Фактическая добыча 2456000 тонн.

Расчетный срок службы шахты – 41 год.

Режим работы предприятия следующий:

число рабочих дней в году – 357;

рабочая неделя шестидневная прерывная;

продолжительность смены для подземных рабочих – 6 часов, для поверхностных – 8 часов.

Работы по добыче и проходке ведутся в три смены, четвертая смена – ремонтно-подготовительная.

Шахта "Краснолиманская" относится к сверхкатегорийной по газу метану и опасной по пыли.

1.2  Краткая геологическая характеристика месторождения

Шахтное поле расположено в центральной части Красноармейского угленосного района Донбасса и сложено комплексом осадочных пород среднего и частью верхнего карбона, относящихся к свитам , , ,. Породы каменноугольного возраста повсеместно перекрыты неогеновыми и четвертичными отложениями.

Дитологические отложения карбона представлены чередованием слоев песчаников, алевролитов, аргиллитов, вмещающих маломощные слои углей и известняков.

Площадь шахтного поля расположена в висячем крыле крупного Центрального надвига. Залегание каменноугольных пород моноклинальное, с падением пластов на восток и северо-запад под углами 3-15°.

Характерной особенностью строения оцениваемой площади является тот факт, что разрывные нарушения в основном развиты в зонах расчленения Центрального надвига на 2-3 ветви, и в большинстве своем сопровождает его и Глубокоярский сброс. Кроме того, нарушения сгруппированы, взбросы сопровождают надвиг и сбросы.

В центральной и восточной частях участка, в зоне шириной 0,8-1,6 км, прослеживается большая группа нарушений. Эта зона будет наименее благоприятной для отработки запасов угля.

Более благоприятными в тектоническом отношении являются блоки на северо-востоке и юго-западе оцениваемой площади.

На отработанной площади ведение горных работ осложняется влиянием зон Центрального надвига, Краснолиманского и Родинского сбросов, а также мелкоамплитудной нарушенности.

Северо-восточный блок наиболее благоприятный для ведения очистных и горных работ, так как наименее подвержен тектонической нарушенности.

В целом оцениваемую площадь можно отнести к типу средней сложности тектонического строения.

Углевмещающие породы в пределах шахтного поля представлены аргиллитами, алевролитами, песчаниками и известняками.

Аргиллит серого, темно-серого цвета, горизонтально- и тонкослоистый, с включением сидеритовых конкреций, пирита в виде стяжений неправильной формы, иногда переслоение углистым материалом, с отпечатками обуглившейся флоры, средней крепости, от среднеустойчивого до весьма неустойчивого.

Алевролит серого, реже – темно-серого цвета, горизонтально-слоистый или с неясно выраженной слоистостью; характерно наличие слюдистого или углистого материала по плоскостям отдельных слоев, а также отпечатков растительности, иногда комковатой текстуры с включением сидеритовых конкреций, малой или средней крепости, от среднеустойчивого до весьма неустойчивого.

Песчаник серого или светло-серого цвета, кварцево-полевошпатовый, на кварцевом или глинистом цементе, слюдистый, иногда с тонкими прослойками алевролита; в основном мелкозернистый, реже среднезернистый и тонкозернистый, слоистый, средней крепости и крепкий, от среднеустойчивого до устойчивого.

Известняк темно-серого, реже серого цвета, скрытокристаллический, массивный, трещиноватый (трещины заполнены кальцитом), характерно наличие углистого материала, крепкий, устойчивый.

Продуктивная толща указанных свит содержит до 60 угольных пластов и прослоев, из которых 13 пластов имеют мощность свыше 0,45 м: , , , l8, l7, l5, l4, l3, , l1, , k7, k5. Краткая характеристика пластов приведена в таблице №1.

Пласт k5 отрабатывается шахтой "Краснолиманская" с 1985 года, выше по падению шахтой “Родинская”.

На оцениваемой площади угольный пласт имеет сложное двухпачечное строение. В центральной части к подсчету приняты обе пачки (), а в северо-западной и, отчасти, в юго-восточной – только верхняя пачка ().

Непосредственная кровля пласта k5 представлена аргиллитом (95%), реже – алевролитом (2,5%), песчаником (2,5%).

Аргиллит с растительным детритом плохой сохранности, трещиноват, контакт с углем резкий.

По опыту ведения горных работ шахтами "Краснолиманская" и “Родинская” породы непосредственной кровли неустойчивы и малоустойчивы, трещиноваты, с включениями карбонатных конкреций в виде желваков и линз. Выделение воды из вышележащих песчаников способствует интенсивному расслоению аргиллита и обрушению его на всю мощность до контакта с песчаником.

На основании приведенных данных аргиллит ожидается малоустойчивым, при мощности слоя менее 1,5 м и резком контакте с вышележащим слоем – неустойчивым, а в зоне повышенной трещиноватости и при мощности слоя менее 0,6 м – весьма неустойчивым, склонным к обрушению.

Алевролит трещиноватый, с отпечатками фауны и флоры, сцепление между слойками слабое, контакт с углем отчетливый, среднеустойчивый, при водонасыщении и в зонах повышенной трещиноватости – неустойчивый.

Песчаник с небольшим количеством растительного детрита, трещиноват, контакт с углем резкий.

Иногда песчаник отделяется от угольного пласта слоем аргиллита или алевролита мощностью до 0,6 м, которые из-за отсутствия сцепления и резкого контакта с песчаником являются “ложной” кровлей. Песчаник в нижней части слоя среднеустойчивый. Мощные слои песчаника являются непосредственной и основной кровлей – устойчивые.

На основании имеющихся данных песчаник на неотработанной площади прогнозируется от средне- до устойчивого. Основная кровля пласта на большей части площади представлена переслаиванием слоев алевролита, песчаника и аргиллита, аналогичными вышеописанным.

По опыту горных работ шахты “Краснолиманская” основная кровля пласта отнесена к среднеобрушаемой, за исключением центральной части шахтного поля, где она представлена мощным песчаником (>7 м) – труднообрушаемой.

Непосредственная почва пласта k5 сложена алевролитом (65%), а за линией расщепления – аргиллитом (30%). В центральной части шахтного поля в почве пласта залегает песчаник (5%).

Алевролит в верхней части слоя комковатой текстуры ("кучерявчик") мощностью до 0,5 м, ниже – волнистослоистый, с остатками детрита, контакт с углем отчетливый.

В горных выработках алевролит среднеустойчивый, кроме слоя "кучерявчика" мощностью до 0,5 м, где он неустойчив.

На оцениваемой площади устойчивость алевролита прогнозируется аналогичной.

Аргиллит в верхней части слоя комковатой текстуры ("кучерявчик") до 0,4 м, ниже – с неясно выраженной слоистостью, с тонкими линзами угля и углистого вещества до 0,1-0,2 см, контакт с углем четкий.

В горных выработках среднеустойчивый, кроме слоя


Таблица 1 - Характеристика пластов

Си­но­ни­мика (ин­декс) пла­ста Характеристика пласта Марка угля Кровля Почва
мощность, м угол падения, градус

объемная масса, т/м3

газообильность м3

Непосредственная Основная тип породы

объемная масса, т/м3

крепость
тип поро­ды мощ­ность, м кре­пость

объ­емная масса, т/м3

тип по­роды мощ­ность, м

объ­ем­ная масса, т/м3

m26

0,56-0,86 3-15 1,30 7,8-23,6

ГII

аргиллит

алевролит

5-9

6-8

1,8-3,5

4-6

2,5

2,5

Аргиллит

Алевролит

Песчаник

3,5-4,5

3-5

5-9

2,5

2,5

2,5

аргиллит

алевролит

2,5

2,5

2-3

2-3

m24

1,05-1,82 2-8 1,25 7,8-23,6

ГII

Аргиллит

Алевролит

Известняк

1,5-2,0

3,0

1,5-2

1,8-4

5-6

9-10

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

Известняк

3-4

7-9

8-10

0,2-0,5

2,5

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-3

2-4

4-7

l7

2,0-3,5 2-13 1,35 7,3-29,1

ГII

Аргиллит

Алевролит

Песчаник

0,7-2,0

3-5

4-5

2-3

4-6

7-9

2,5

2,5

2,5

Алевролит

Аргиллит

Песчаник

4-7

1-2

5-7

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-3

3-5

5-7

l5

0,18-0,95 9-18 1,30 7,3-29,1

ГII

аргиллит

алевролит

3-4,5

4,5

2-4

5-6

2,5

2,5

Алевролит

Аргиллит

Песчаник

2-3

4-6

4-7

2,5

2,5

2,5

аргиллит

алевролит

2,5

2,5

2-3

2-5

l4

0,65-1,35 4-12 1,31 7,3-29,1

ГII

Аргиллит

Песчаник

Известняк

2-3

17-20

0,4-0,8

2-4

7-9

10

2,5

2,5

2,5

Алевролит

Аргиллит

Песчаник

3-6

5-7

13-17

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-3

2-5

3-5

l3

1,95-2,26 6-12 1,34 7,3-29,1

ГII

Аргиллит

Алевролит

Песчаник

3-5

3,5-6

2-17

2-4

5-6

7-8

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

Известняк

1,5-3

4,5-6

2,5-7

0,15-0,3

2,5

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-3

2-4

5-7

kн8

0,5-0,65 4-17 1,30 9,0-26,8

ГЖII

Аргиллит

Алевролит

Песчаник

2-6

3-5

15

2-4

5-6

7-9

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

4-6

2-4

15-20

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-4

2-5

5-7

k7

0,25-0,68 3-13 1,27 9,0-26,8

ГЖII

Аргиллит

Алевролит

Песчаник

2-3

6

5-6

2-4

5-6

7-9

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

1,5-4,5

4-6

3-8

2,5

2,5

2,5

Аргиллит

Алевролит

2,5

2,5

2-3

2-4

k5

1,15-1,22 7-17 1,28 9,0-26,8

ГЖII

Аргиллит

Алевролит

Песчаник

2-3

2-3

20

1,8-4

4-6

7-8

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2-3

3-5

4-8

2,5

2,5

2,5

Аргиллит

Алевролит

Песчаник

2,5

2,5

2,5

2-3

2-4

5-7


"кучерявчика", где он неустойчив.

Песчаник в нижней части слоя на отдельных участках конгломератовидный, контакт с углем четкий, горными работами не вскрывался, прогнозируется устойчивым.

В соответствии с перечисленными факторами горно-геологические условия разработки пласта k5 следует классифицировать как сложные.

1.3 Вскрытие и подготовка шахтного поля

Шахтное поле вскрыто вертикальными стволами (вентиляционным, новым скиповым, южным вентиляционным, северным воздухоподающим, клетьевым) и капитальным квершлагом горизонта 545 м.

Вскрытие запасов резервного блока и засбросовой части осуществляется воздухоподающим стволом №1 и капитальным квершлагом на гори­зонтах 545 м (на пласт m) и 845 м (на пласты l4 и l3). Воздухоподающий ствол №1 на глубину 986 м, диаметром 8,0 м крепление ствола - монолитный бетон марки 200 до глубины 761 м толщиной - 400 мм, а ниже - 500 мм. Ствол предназначен для спуска, подъе­ма людей, материалов, оборудования, подачи электроэнергии, струи воздуха в шахту. Краткая характеристика вскрывающих выработок приведена в таблице 2.

Таблица 2 - Характеристика вскрывающих выработок

Наименование выработки Глубина, м

Сечение в свету, м2

Форма выработки Материал крепления Краткие сведения о расположении

Воздухоподающий ствол №1

Новый скиповый

Клетьевой

Южный квершлаг

986

545

545

545

8,0

8,0

8,0

15,5

круглая

круглая

круглая

арочная

бетон

бетон

бетон

КМП-А3 + бетон

пос. Суворово

территория шахты

территория шахты

Для обеспечения нормальной работы вентиляции при эксплуатаци­онных работах шахты между горизонтами 845 м и 986 м сооружен венти­ляционный гезенк, оборудованный лестничным отделением.

Для отработки бремсберговой части пласта m4 в воздухоподающем стволе №1 предусмотрено сопряжение на горизонте 337м.

В стволе размещаются трубопроводы сжатого воздуха, пожарно-оросительные, водоотливные, для перепуска воды между горизонтами, подачи эмульсии, а также силовые, сигнальные и телефонные кабели.

Охрана выработок предусматривается предохранительными охранны­ми целиками, исключающими вредное влияние от воздействия очистных работ. При погашении выработок целики отрабатываются.

Принятая схема вскрытия пласта l3 и резервных запасов шахты яв­ляется наиболее приемлемой, т.к. позволяет без остановки действующей шахты и реконструкции подъемных установок обеспечить стабильную и устойчивую работу подготовительных и очистных забоев на весь срок службы шахты, а также вскрытия новых глубоких участков.

Способ подготовки шахтного поля – панельный. Размеры панелей по простиранию 1,5-3 км, по падению 1-1,5 км. Порядок отработки пластов, горизонтов и панелей – нисходящий.

По падению шахтное поле делится на три горизонта: 210, 545, 845 метров. Порядок отработки ярусов в панели обратный, от границ панели к уклонам, бремсбергам. Учитывая опыт работы шахты и наличие выбросоопасных песчаников проектом принята пластовая подготовка горных работ.

Охрана капитальных выработок осуществляется целиками угля. Ширина угольных целиков в зависимости от глубины расположения выработок и сопротивлению пород сжатию составит:

горизонт 545 м - 60-85 м;

горизонт 845 м - 80-105 м.

Отработка целиков осуществляется при погашении выработок. Принятая проектом схема подготовки в условиях шахты позволяет осуществить полную конвейерную доставку угля и выдачу его на существующую площадку, добиться максимальной концентрации горных работ и обеспечить достижение оптимальных нагрузок на очистные забои.

1.4 Система разработки на проектируемом участке

На разрабатываемых шахтой пластах принята система разработки длинными столбами по простиранию. Главной особенностью которых явля­ется отсутствие взаимного влияния подготовительных и очистных работ. На шахте сохраняется существующая система разработки - длинными стол­бами по простиранию за исключением участка запасов между нарушениями в забросовой части пласта l3, где применяются длинные столбы по восстанию. Проектом принята возвратноточная схема проветривания выемочных участков с по­гашением выработок вслед за лавой, что обусловлено опасностью самовозгорания пластов. На участках с возвратноточной схемой проветривания достижение высоких нагрузок по газовому фактору обеспечивается при помощи газо­отсоса из выработанного пространства и дегазации.

Подготовка выемочных столбов предусматривается ярусными вентиля­ционными и конвейерными штреками. На протяжении 50м впереди лавы и 40м за лавой в ярусном штреке и бортовой выработке устанавливаются стойки усиления крепи типа ГСК. Длина выемочных столбов 1200-2000м, длина лавы составляет 170-320м. В качестве основного способа управления кровлей принято полное обрушение. Для поддержания сопряжений лав с ярусными штреками используются механизированные крепи сопряжений.

Краткую характеристику системы разработки на пласте, принятом к проектированию привожу в таблице 3.

Таблица 3 - Характеристика системы разработки на пласте, принятом к проектированию

Наимено­вание системы Параметры системы Подготовительные выработки участка
Высота этажа (яруса) или ширина столба, м Длина выемочного поля, м Длина лавы, м Наличие и размер целиков Наименование Длина, м Сечение Материал крепи
форма

площадь, м2

Длинными столбами по прости­ранию 170-320 1200-2000 170-320 без целиков между соседними столбами

Вентиляционный штрек

Конвейерный штрек

1380

1380

арка

арка

8,5

8,5

КМП-А3/11,2

КМП-А3/11,2

1.5 Технология ведения очистных работ (базовый вариант)

Очистные работы на участке №1, отрабатывающего 4-ю северную лаву уклона 1”бис” пласта k5 и очистные работы на остальных добычных участках проводятся по следующим технологическим схемам.

Схема подготовки лавы – панельная, система разработки – длинными столбами по простиранию. Краткие технико-экономические показатели участка приведены в таблице 4.

Для подготовки выемочного участка пройдены конвейерный, вентиляционный штреки и разрез. Штреки и разрез проводились комбайном ГПКС.

Конвейерный штрек предназначен для транспортировки горной массы и подачи свежего воздуха к очистному забою, размещения конвейерной линии для выдачи горной массы из очистного забоя, передвижения людей. Площадь поперечного сечения выработки в свету – 8,5 м2. Конвейерный штрек оборудован конвейерами: 1Л-100К, 1Л-100, СП-202. По конвейерному штреку проложены: пожарно-оросительный трубопровод, рельсовый путь колеей 600 мм, силовые и сигнальные кабели. Призабойный конвейер СП-202 настилается с нижней стороны конвейерного штрека.

Вентиляционный штрек служит для выпуска исходящей струи воздуха, доставки материалов и оборудования к очистному забою, передвижения людей. Для доставки материалов и оборудования к лаве настлан рельсовый путь из рельс Р-24 колеей 900 мм. Доставка ведется в вагонах, "козах", площадках с помощью лебедок ЛВ-25.

Вентиляционный и конвейерный штреки погашаются вслед за подвиганием очистного забоя.

На конвейерном штреке, впереди очистного забоя, на расстоянии 80-30 метров, монтируется энергопоезд, состоящий из магнитной станции СУВ-350А, трех маслостанций СНТ-32 и других "площадок" с оборудованием.

Разрез служит для монтажа в нем механизированной крепи 1КМ-88, забойного конвейера СП-87ПМ, комбайна РКУ-10, кабелей электропитания комбайна и приводов конвейера лавы, трубопровода орошения, кабелей сигнализации, связи и управления забойным оборудованием.

Проветривание лавы возвратноточное, согласно классификации "Руководства по проектированию вентиляции угольных шахт", Макеевка-Донбасс, 1989 г.

В лаве предусматривается применение комплекса 1КМ-88 с комбайном РКУ-10 и конвейером СП-87ПМ.

Управление кровлей производится полным обрушением.

Использование комбайна РКУ-10 обеспечивает без нишевую выемку угля. На сопряжениях с конвейерным и вентиляционным штреками производится выемка угля по берме вручную при помощи отбойного молотка. Крепление бермы производится шпальным брусом длиной 3,9 м, заведенным за ножки арочной крепи под кровлю пласта, и пробитыми под него деревянными стойками.

Крепление сопряжений вентиляционного и конвейерного штреков осуществляется инвентарной крепью сопряжения, состоящей из трех швеллеров №18 длиной по 6,0м и устанавливаемых под них деревянных стоек. Стойки устанавливаются в местах пересечения швеллеров с верхняками штрековой крепи.

Для уменьшения сползания швеллера по верхнякам штрекового крепления, в швеллер заводится брус и производится крепление швеллера по его длине к верхнякам штрекового крепления специальными хомутами жесткости.

Таблица 4 - Технико-экономические показатели участка

Наименование показателей Значение

Мощность пласта, м

Угол падения пласта, градус

Объемная масса угля, т/м3

Длина лавы, м

Длина ниш, м

Тип выемочного механизма

Схема работы

выемочного механизма

Ширина захвата, м

Число циклов в сутки, циклов

Добыча угля за цикл, т

Добыча угля за сутки, м

Добыча угля за месяц, м

Штат рабочих явочный, человек

Штат рабочих списочный, человек

1,30

16

1,30

210

-

РКУ-10

Односторонняя: снизу вверх – выемка; сверху вниз – зачистка

0,63

3

212

848

25440

92

175

Работы в очистном забое, оборудованном комплексом КМ-88, выполняются в следующей последовательности:

1. Выемка угля комбайном РКУ-10;

2. Передвижка секций крепи КМ-88;

3. Концевые операции;

4. Зачистка лавы комбайном РКУ-10;

5. Задвижка конвейера СП-87ПМ к забою.

Работы по ремонту и подготовке комплекса к работе, как правило, производятся в ремонтно-подготовительную смену.

В штате участка числится 184 человека. Из них: 12 – ИТР, 119 – ГРОЗ, 31 – электрослесарь, 11 – горнорабочих по ремонту горных выработок, 5 – машинистов подземных установок, 6 – горнорабочих подземных. Явочный состав составляет 50 - 60% от списочного.

2 технологическая часть 2.1 Анализ существующей технологии очистных работ на шахте по данному пласту и задач дипломного проектирования

Изучив технологию и организацию работ на участке, прихожу к выводу, что имеются резервы и возможности для увеличения нагрузки на очистной забой, снижению материальных и трудовых затрат.

Применяемый на участке комплекс 1КМ-88 морально устарел. Коэффициент затяжки кровли составляет 72%. В связи с боковым расположением домкрата передвижки секции и узким основанием, данный комплекс подвержен, так называемому “сползанию” основания и крену секций крепи.

Крепление сопряжений производится вручную при помощи швеллеров и деревянных стоек. Крепление бермы производится шпальным брусом, для заведения которого, требуется предварительно произвести отбойку угля отбойным молотком или «на обушок».

При передвижке трех верхних и нижних секций крепи, на них заводится шпальный брус, под который, между верхняками и под конец, пробивается три деревянных стойки. При погашении тупиков конвейерного и вентиляционного штреков, брусья остаются в завале.

 Выемочный комбайн РКУ-10, применяемый на участке, зарекомендовал себя положительно. Он прост в обслуживании, обладает высокой энерговооруженностью и, на данный момент, наиболее подходит для данных условий.

Выемка угля на участке осуществляется по односторонней схеме: снизу вверх – выемка; сверху вниз – зачистка.

Проанализировав существующую технологию очистных работ, предлагаю следующее:

а) заменить морально устаревший механизированный комплекс 1КМ-88 на новый, более производительный, обеспечивающий безопасность при ведении горных работ комплекс 2МКД90;

б) для обеспечения безопасности рабочих, обслуживающих верхнее и нижнее сопряжения лавы, для экономии лесоматериалов предлагаю использовать крепи сопряжения КСШ5К;

в) для обеспечения безопасности рабочих, обслуживающих верхнее и нижнее сопряжения лавы, для экономии лесоматериалов предлагаю использовать в качестве четырех первых и четырех последних секций крепи концевые комплекты 2КК;

г) отказаться от односторонней схемы выемки угля и использовать челноковую схему;

д) заменить конвейер лавы СП-87ПМ на более мощный, модернизированный конвейер СПЦ163, который рекомендуется использовать в составе комплекса 2МКД90.

2.2 Исходные данные

Исходные данные для проектирования свожу в таблицу 5.

Таблица 5 – Исходные данные для проектирования

Показатели Значение
Мощность пласта, м 1,3
Угол залегания пласта, град 16

Плотность угля, т/м3

1,30
Колебание пласта по мощности, м Dm=0,05

Относительная газообильность участка, м3

16

Абсолютная газообильность участка, м3/мин

4,3
Размер выемочного участка, м 210

Пласт по выбросам

самовозгоранию

угольной пыли

горным ударам

не опасен

опасен

опасен

не опасен

Обводненность участка не обводнен

Непосредственная кровля

мощность, м

плотность пород, т/м3

удельный вес, кН/м

песчаный сланец

9,2

23,05

2,35

Основная кровля песчаник, песчаный сланец
Непосредственная почва глинистый сланец
Основная почва песчаник
Сопротивляемость угля резанию, кН/м 270
2.3 Способ подготовки шахтного поля

Подготовкой шахтного поля называют проведение после вскрытия шахтного поля системы подготавливающих выработок, обеспечивающих условия для эффективной и безопасной выемки полезного ископаемого. Подготовку шахтного поля обычно ведут частями и по мере их отработки подготавливают следующие части.

Существует несколько способов расположения подготавливающих выработок при подготовке угольных месторождений к разработке. Каждая такая схема или способ характеризуется своими индивидуальными особенностями. Схемой подготовки шахтного поля следует считать характерное расположение объединенных с учетом функционального назначения в единый комплекс подготавливающих выработок, обеспечивающих деление шахтного поля на готовые к выемке части. Таким образом, классификационным признаком схем подготовки шахтного поля является деление его на характерные части. В соответствии с ним различают погоризонтную, панельную, этажную и комбинированную схемы подготовки шахтного поля.

На шахтах Донбасса применяются все выше перечисленные способы подготовки. К ним предъявлены следующие основные требования: экономичность, безопасность, полнота извлечения запасов полезного ископаемого (минимум его потерь в недрах), обеспечение охраны сооружений, природных объектов и окружающей среды.

Этажный способ заключается в том, что шахтное поле делится по простиранию на этажи, которые отрабатываются последовательно и, как правило, в нисходящем порядке. Этажная схема подготовки шахтного поля отображена на рисунке №1.

Рисунок 1 - Этажная схема подготовки шахтного поля.

Этажную схему рекомендуют применять на пластах с углом падения свыше 25 °. Размер этажа по простиранию равен размеру шахтного поля по простиранию, по падению – наклонной высоте этажа. Преобладающие размеры этажа по падению составляют 120 – 450 м (в зависимости от угла падения пласта).

Достоинства этажной схемы подготовки: сравнительно небольшой объем проведения наклонных подготавливающих выработок; быстрота ввода очистных забоев в эксплуатацию (при сплошной системе отработки); простота схемы вентиляции. К ее недостаткам относят наличие длинных этажных штреков, разбросанность горных работ, значительные затраты на поддержание этажных штреков.

Панельный способ заключается в том, что шахтное поле делят на примерно одинаковые по размеру панели. В каждой панели проводят комплекс подготавливающих выработок, позволяющих эксплуатировать данную панель независимо от других. Общими выработками между панелями на одном пласте являются выработки транспортного и вентиляционного горизонтов или только транспортного горизонта. Панельная схема подготовки шахтного поля показана на рисунке №2.

Рисунок 2 – Панельная схема подготовки шахтного поля

Панельную схему подготовки применяют на пластах любой мощности с углами падения до 25° (преимущественно 10 - 20°). Размер панели по простиранию обычно не превышает 2,5 – 3 км, а размер ее по падению равен или кратен наклонной высоте выемочной ступени.

К достоинствам панельной схемы подготовки можно отнести: возможность высокой концентрации очистных работ и транспортных потоков, полной конвейеризации транспорта от очистного забоя до ствола; сокращение объема одновременно поддерживаемых выработок; достижение большой производственной мощности. К недостаткам панельного способа относят повышенный объем проведения и поддержания панельных наклонных выработок, сложность изоляции выработок в смежных ярусах, что увеличивает утечки воздуха и усложняет регулирование проветривания выемочных участков.

Погоризонтный способ подготовки шахтного поля заключается в том, что шахтное поле делят по падению транспортными горизонтами на выемочные ступени, отрабатываемые лавами по падению или восстанию. Схема погоризонтного способа подготовки шахтного поля показана на рисунке №3.

Рекомендуемая область применения погоризонтной схемы – пласты с углом падения до 10°. При погоризонтной схеме подготовки один транспортный горизонт служит для отработки как бремсберговой, так и уклонной ступени. Размер выемочной ступени по простиранию равен длине шахтного поля или той его части, которую отрабатывают лавами погоризонтно. По падению размер ступени изменяется от 400 до 2600 м. Число выемочных столбов, размещаемых в выемочной ступени, зависит от длины очистного забоя. С ростом его длины уменьшается число столбов и снижается объем проведения и поддержания наклонных подготовительных выработок.

Рисунок 3 – Погоризонтная схема подготовки шахтного поля

Погоризонтный способ подготовки шахтного поля является на данный момент наиболее прогрессивным и практически не имеет недостатков. Он рекомендован для всех строящихся шахт и шахт, находящихся на реконструкции.

Комбинированный способ в основном применяется на старых действующих шахтах, когда давно разрабатываемые пласты отрабатываются одним способом, а новые – другим. Также может применяться на шахтах, разрабатывающих пласты с переменным углом падения и большой мощностью междупластья, т. е. при значительной протяженности группирующих выработок. Их применение преследует своей целью повышение концентрации горных работ, улучшения проветривания и отвода воды, сокращения объема проветриваемых выработок и уменьшение затрат на транспортирование угля.

Так как угол падения пласта составляет a=16 градусов, то для отработки пласта К5' буду использовать панельный способ отработки шахтного поля. Схему отработки смотри в графической части.

2.4 Выбор системы разработки

Система разработки – определенный, увязанный в пространстве и времени порядок ведения очистных и подготовительных работ в пределах участка шахтного поля. Таким участком может являться выемочная ступень, панель или этаж.

Основные факторы, влияющие на выбор системы разработки: элементы, форма залегания и строение угольных пластов; свойства угля и вмещающих пород; газоносность и водоносность месторождения; склонность пластов к внезапным выбросам угля и газа, горным ударам; склонность угля к самовозгоранию; расстояние между разрабатываемыми пластами; глубина разработки; способы и средства механизации производственных процессов в очистных и подготовительных забоях. Элементы залегания пластов сохраняются на значительных площадях или могут изменяться в пределах одного шахтного поля. Поэтому при составлении программы развития горных работ на шахте предусматривают возможность перехода от одной системы к другой. Переход должен быть произведен с минимальными затратами средств и времени на базе существующего способа подготовки шахтного поля.

На шахтах Донбасса применяются следующие системы разработки:

1.  сплошная;

2.  столбовая;

3.  комбинированная.

Сплошная система разработки предполагает одновременное ведение очистных и подготовительных работ в выемочном поле или этаже. При этом очистной забой и забои откаточного (конвейерного) и вентиляционного штреков, оконтуривающих выемочное поле или этаж движутся в одном направлении. Схему сплошной системы разработки смотри на рисунке №4.

Рисунок 4 – Схема сплошной системы разработки

Достоинствами сплошной системы разработки являются быстрый ввод очистных забоев в эксплуатацию, возможность размещения породы, получаемой при проведении штреков в выработанном пространстве, сравнительно невысокая трудоемкость проведения штреков. Недостатки сплошной системы разработки – сложность совмещения подготовительных и очистных работ в одном выемочном столбе или поле, повышенные нагрузки на крепь подготавливающих выработок в зонах активного опорного давления, невозможность доразведки пласта при подготовке выемочных столбов или полей, большая утечка воздуха через выработанное пространство, что требует установки бутовых полос.

Столбовая система разработки предполагает разделение в пространстве и во времени очистных и подготовительных работ. При столбовой системе разработки все подготавливающие выработки в выемочном поле проводят до начала очистной выемки.

Столбовая система позволяет отрабатывать подготовленный столб в обратном порядке – от границ этажа (яруса) к центру шахтного поля (панели), что позволяет погашать часть выработок. Схема столбовой системы разработки приведена на рисунке №5.

Рисунок 5 – Столбовая система разработки

 Очистные забои при столбовой системе на пологих и наклонных пластах имеют прямолинейную форму, на крутых – прямолинейную и потолкоуступную. Они могут подвигаться по простиранию, падению, восстанию, или диагонально к линии простирания пласта.

Основным способом управления горным давлением в лаве при столбовой системе является полное обрушение, реже используют полную закладку выработанного пространства. При отработке тонких крутых пластов применяют также удержание кровли на кострах или плавное опускание.

К общим достоинствам столбовой системы относят: проведение выемочных выработок в массиве, не подверженном непосредственному влиянию очистных работ, и в соответствии с этим большая их устойчивость; разделение в пространстве и времени подготовительных и очистных работ в выемочном поле; получение дополнительной информации о горно-геологических условиях залегания пласта при подготовке запасов к выемке; возможность погашения выемочных выработок по мере подвигания очистных забоев.

Недостатками столбовой системы разработки являются: большой объем проведения выработок до начала очистных работ; сложность проветривания длинных (до 1500 м) выемочных выработок при их проведении, особенно на высокогазоносных пластах; необходимость поддержания длинных выемочных выработок как в период их проведения, так и во время ведения очистных работ.

Для подготовки лавы в эксплуатацию по столбовой системе разработки необходимо пройти 4-й северный конвейерный штрек длинной L=1380 м [по заданию] и 4-й северный вентиляционный штрек такой же длины. Эти выработки будут проводиться двумя проходческими бригадами одновременно по 310 метров в месяц [из опыта ш. Краснолиманская]. Следовательно, эти выработки будут пройдены за 5 месяцев. Затем необходимо нарезать лаву. По опыту работы шахты, эта процедура займет 1,5 месяца. Дальнейший монтаж комплекса и оборудования займет также 1,5 месяца [из опыта работы]. Следовательно, на подготовку и ввод лавы в эксплуатацию потребуется затратить, в общей сложности, 8 месяцев.

Исходя из всего выше сказанного, буду применять в проекте столбовую систему разработки.

2.5 Выбор технологии и оборудования 2.5.1 Выбор технологической схемы и механизации очистных работ

Выемку угля в лаве можно производить:

а) отбойными молотками;

б) широкозахватными комбайнами;

в) узкозахватными комбайнами;

г) струговыми установками;

д) бурошнековыми установками.

Лаву можно крепить:

а) деревянными стойками;

б) гидравлическими стойками;

в) механизированной крепью.

Доставку угля по лаве можно производить скребковыми конвейерами.

Учитывая прогрессивные технологические схемы, предлагаю в лаве использовать механизированный комплекс с узкозахватным комбайном.

Предлагаю следующую технологию выемки угля. Комбайн работает по челноковой схеме. Вслед за проходом комбайна осуществляется передвижка секций крепи и задвижка конвейерного става. На концевых участках, учитывая технологические возможности комбайна и вынос головок конвейера на штреки, ниши не предусматриваю.

Учитывая предложенную технологию, а мощность пласта m=1,3 м, угол падения пласта a=16° предлагаю использовать в лаве механизированный комплекс МКД90. Горнотехнические условия применения комплекса МКД90 свожу в таблицу №6. Данный комплекс производится серийно Дружковским машиностроительным заводом и предназначен для комплексной механизации очистных работ на пластах средней мощности и мощных. Агрегаты и оборудование, входящие в комплект поставки механизированного комплекса свожу в таблицу №7.

Высоконадежный очистной комплекс МКД90 предназначен для механизации процессов выемки угля, крепления и управления кровлей полным обрушением в очистных забоях пологих пластов мощностью 0,8-2,0 м с самыми сложными горно-геологическими условиями.

Комплексы могут комплектоваться всеми серийно выпускаемыми и перспективными моделями очистных комбайнов, струговых установок и скребковых конвейеров.

В комплексе обеспечена техническая последовательность операций по добыче угля; кинематические связи позволяют машинам и оборудованию работать фактически как единый агрегат. Базой всех машин и оборудования, расположенных в лаве, служит став скребкового конвейера.

Таблица 6 – Горнотехнические условия применения механизированного комплекса МКД90

Система разработки столбовая
Мощность обслуживаемых пластов, м 0,8-2,0

Угол падения пласта, градус

при подвигании лавы по простиранию

то же, по падению или восстанию

£35

£15

Характеристика кровли:

Непосредственной

Основной

неустойчивая

кроме труднообрушаемой

Способ управления кровлей полное обрушение
Длина выемочного поля, не менее м 900
Форма прилегающих к лаве штреков трапециевидная или арочная с нижней подрывкой не менее 0,8 м
Ширина захвата, м 0,8;0,63

Минимальное проходное сечение для воздуха в забое, м2

2,2

Таблица 7 – Комплект поставки комплекса МКД90

1МКД90 2МКД90 3МКД90 2МКД90Т 3МКД90Т
Механизированная крепь 1КД90 2КД90 3КД90 2КД90Т №КД90Т
Узкозахватный комбайн

КА-80

КА-90

1К103М

РКУ10

РКУ13

2ГШ68Б

ГШ500

РКУ10

РКУ13

2ГШ68Б

ГШ500

Скребковый конвейер

СПЦ162

СПЦ163

СПЦ163 СПЦ273 СПЦ163 СП-273
Крепь сопряжения КСШ5К, СО75С,Т6М
Насосные станции СНУ5, СНТ32
Кабелеукладчик КЦ-170, КЦН-200
Производительность, не менее т/сут 1000 1200 1500 1400 1700
2.5.2 Выбор комбайна и расчет производительности

Переломным этапом в угледобывающей промышленности явилось создание комбинированной углевыемочной машины – очистного комбайна, применение которого позволило одновременно механизировать в очистном забое три процесса: зарубку, отбойку и погрузку угля на призабойный конвейер. Эта задача для длинных очистных забоев лав впервые была успешно решена в Союзе Советских Социалистических Республик. В последующие годы проводилось дальнейшее совершенствование угледобывающей техники. Наращивалась энерговооруженность комбайнов, совершенствовались технологии. Применение комбайнов с разнесенными шнеками позволило отказаться от такой трудоемкой операции как взятие ниш.

На данный момент отечественная промышленность выпускает различные типы комбайнов. Их различие состоит в условии их применения: для пластов с различной мощностью и различными углами залегания.

Согласно выбранному комплексу, учитывая мощность пласта m=1,3 м предлагаю использовать в лаве комбайн РКУ10. Техническую характеристику комбайна привожу в таблице №8.

Таблица 8 – Техническая характеристика комбайна РКУ10

Исполнительный орган:

пределы регулирования по высоте, м

величина опускания ниже опорной поверхности конвейера, мм

тип

число шнеков

ширина захвата, м

диаметр шнеков, мм

1 – 1,82

£80

шнековый

2

0,63

1000

Механизм подачи:

тип

скорость подачи, м/мин

тяговое усилие, кН

гидравлический БСП

£5/10

250/125

Электродвигатель комбайна:

тип

число

мощность, кВт

напряжение, В

ЭКВЭ-4-200

1

200

660, 1140

Габариты комбайна, мм:

длина корпуса

ширина корпуса

высота корпуса от почвы в зоне крепи

6950

915

800

Масса, кг 17000

Очистные узкозахватные комбайны РКУ10 предназначены для выемки угля в очистных забоях пластов мощностью 1-1,82 м, с углом падения до 35 градусов по простиранию и до 10 градусов по падению, при сопротивляемости угля резанию до 300 кН/м.

Применяются в механизированных комплексах 2КМ87, 2КМТ, 2МКД90, 2МКД90Т и другими, оборудованных конвейерами СП87М, СПЦ163, СПЦ273 с рейкой 3БСП или 2УКПК бесцепной системы подачи.

Комбайн оснащен исполнительным органом, состоящим из двух шнеков, закрепленных на выводных валах поворотных редукторов; регулировка по мощности и гипсометрии пласта производится с помощью гидродомкратов. Шнеки симметрично расположены по концам корпуса машины, что обеспечивает работу в лаве без предварительной подготовки ниш при условии размещения приводных головок конвейера на штреках. Внедрение комбайна в пласт на концевых участках лавы в основном производится косыми заездами, (конструктивная компоновка комбайна позволяет применять также и фронтальную зарубку).

Комбайны оснащены двумя бесцепными механизмами подачи с гидроприводом на базе аксиально-поршневого насоса РНАСМ-125/320 с регулируемой подачей и гидромотора РМНА-125/320.

Механизмы подачи оснащены фрикционными тормозными устройствами, осуществляющие удержание комбайна на конвейер в аварийных ситуациях.

Наличие двух механизмов подачи и тормозных устройств позволяет работать на пластах с углами падения свыше 9 градусов без применения предохранительной лебедки.

Для пылеподавления комбайн оборудован системой орошения, в которую входят насосная установка 1УНЦС-13 и забойный водовод ВЗН-32. Имеется внутреннее орошение с подачей воды через валы шнеков непосредственно к резцам в зону разрушения угля и внешнее с подачей воды в зоны распространения пыли.

Комбайны РКУ10 серийно изготавливаются Горловским машиностроительным заводом.

2.5.2.1 Определение теоретической производительности комбайна

Теоретическую производительность комбайна определяем по формуле в тоннах на минуту

Qтв´ r ´ gу´ Vр,

где тв – вынимаемая мощность пласта, м; тв=1,3;

r – ширина захвата комбайна, м; r=0,63;

gу – плотность угля в массиве, т/м3; gу=1,3;

Vр – рабочая скорость комбайна, определяю по формуле в метрах на минуту

,

Pуст - устойчивая мощность двигателей выемочной

машины, кВт; Pуст=200 [таблица №8];

Нw - удельные энергозатраты выемки угля, кВт´ч/т;

Нw=1,0 [5,рис.11].

 

Qт=1,3´0,63´1,3´3,13=3,33

2.5.2.2 Определение сменной производительности комбайна

Сменную производительность комбайна определяю по формуле в тоннах на смену

Qсм=60´Qт´kм´Tсм,

где kм – коэффициент машинного времени, характеризует

продолжительность работы комбайна по выемке угля

kм=0,47 [2, стр. 148];

Tсм - продолжительность смены по выемке угля, час; Tсм=6

Qсм=60´3,33´0,47´6=563,44

2.5.2.3 Определение комбайновой суточной нагрузки на очистной забой

Комбайновую суточную нагрузку на очистной забой определяю по формуле в тоннах на сутки

Асутсм´псм´kсу´kуп,

где Дсм - сменная нагрузка на забой по производительности

комбайна, определяю по формуле в тоннах на смену

Дсм=Qсм´Сиз,

Сиз –коэффициент извлечения угля в процессе выемки;

Сиз=0,95 [данные ш. Краснолиманская];

псм – число смен по добыче угля в сутки; псм=3;

ксу – коэффициент, учитывающий сложность условий выемки (геологические нарушения, изменения мощности пласта и т.д.); kсу=0,95 [5, стр.6];

kуп - коэффициент, учитывающий угол падения пласта; kуп=0,92[5, стр.6].

Дсм=563,44´095=535,27

Асут=535,27´3´0,95´0,92=1403,48

2.5.2.4 Проверка максимальной суточной добычи по газовому фактору

В шахтах опасных по метану, чем больше добывается угля, тем больше выделяется метана. По ПБ требуется, чтобы в исходящей струе участка было метана не более 1%. Чтобы концентрация CH4 не поднималась, на практике добавляют расход воздуха в лаву. При этом растет скорость воздуха в лаве. Но по ПБ скорость воздуха в лаве не должна превышать 4 м/с. Исходя из этих соображений определяется или проверяется, сколько угля можно добыть в сутки по газовому фактору в лаве.

Максимально допустимая нагрузка на очистной забой определяется по формуле в тоннах на смену

,

где Ар - расчетная нагрузка на забой по технической способности комбайна, т/сут; Ар=1403,48

Iуч - абсолютная газообильность участка, м3/т; Iуч=9,5;

Qр - максимальный расход воздуха для проветривания участка определяется по формуле в метрах кубических на минуту

Qр=60´Sоч.min´Vmax´kо.з.

Sоч.min - минимальное поперечное сечение лавы, м2; Sоч.min=2,5 [5; таб.4];

Vmax - максимальная допустимая скорость воздуха в

лаве, м/с; Vmax=4[по ПБ];

kо.з - коэффициент, учитывающий утечку воздуха по выработанному пространству призабойной части лавы; kо.з=1,25 [5, таб.2];

С - допустимая концентрация метана в исходящей струе лавы; С=1% [по ПБ];

С0 - концентрация метана в поступающей струе; С0=0,1 [данные ш. Краснолиманская]

Qр=60´2,5´4´1,25=750

Полученный результат Аmax меньше суточной добычи комбайна, поэтому к дальнейшим расчетам принимаю Асут=1362,74 тонны.

2.5.3 Выбор средств доставки угля по лаве

Доставку угля по лаве предлагаю производить при помощи скребкового конвейера. Из числа предлагаемых для эксплуатации в составе механизированного комплекса МКД90 конвейеров [смотри таб. 7], выбираю конвейер СПЦ163. Его технические характеристики привожу в таблице №9.

Проверку производительности конвейера произвожу методом расчета производительности конвейера для данных условий и сравнения с паспортными данными.

Производительность конвейера нахожу по формуле в тоннах на час

Qк= 60´Vр´r´mв´gу´Cиз´kр,

где kр – коэффициент резерва производительности;

kр=1,1¸1,5 [5, стр.7]; принимаю kр=1,13;

Qк=60´3,13´0,63´1,3´1,3´0,95´1,13=214,65

Сравнивая полученное значение с паспортным, равным 400 т/час, прихожу к выводу, что данный конвейер подходит к эксплуатации в данных условиях.

Таблица 9 – Техническая характеристика конвейера СПЦ163

Параметры Значение
Производительность, т/час 400
Длина конвейера, м 220

Электродвигатель

мощность, кВт

количество двигателей

110

2

Скорость движения цепи, м/сек 1
Длина рештака, мм 1500
Шаг скребков, мм 920
2.5.4 Выбор способа управления кровлей

Управление кровлей – совокупность мероприятий по регулированию проявлений горного давления в рабочем пространстве очистного забоя и прилегающих к нему подготовительных выработок с целью обеспечения безопасности и необходимых производственных условий. Эти мероприятия сводятся к правильному выбору крепи горных выработок, предупреждению массовых обрушений пород, горных ударов и внезапных выбросов угля и газа.

В зависимости от строения, свойства боковых пород, характера проявления горного давления и осуществления мероприятий по регулированию горного давления в угольных шахтах применяют шесть способов управления горным давлением: полное обрушение, плавное опускание, частичная закладка, частичное обрушение, удержание на кострах и полная закладка.

Наиболее распространенный способ управления кровлей – полное обрушение. Этот способ является самым экономичным, отличается малой трудоемкостью, высокой производительностью и позволяет полностью механизировать работы по управлению кровлей.

Назначение способа – предупредить или ослабить интенсивное обрушение основной кровли, уменьшить опускание толщи вышележащих пород путем заполнения выработанного пространства разрушенными породами непосредственной кровли.

Сущность способа в том, что по мере подвигания очистного забоя и увеличения консоли непосредственной кровли производят ее периодическое обрушение (посадку) за пределами призабойного пространства на величину шага самопроизвольного обрушения непосредственной кровли. Величина шага зависит от устойчивости пород и принимается кратной ширине вынимаемой в лаве полосы угля (захвату комбайна).

Управление кровлей полным обрушением применяют в породах 1 и 2 классов по классификации ВУГИ; 1-3 классов – по классификации ДонУГИ, т.е. когда в непосредственной кровле залегают породы, склонные к обрушению после удаления крепи.

При применении деревянной крепи в лаве мощность легкообрушающихся пород должна быть не менее 6-8-кратной мощности пласта (1 класс по классификации ВУГИ). В этих условиях непосредственная кровля, обрушаясь, разрыхляется и увеличивается в объеме в 1,15-1,3 раза, заполняет выработанное пространство. Основная кровля прогибается без вторичных осадок и опирается на обрушенные породы непосредственной кровли.

При применении металлической крепи, обладающей большей несущей способностью, полное обрушение можно применять при мощности непосредственной кровли меньше 6-8-кратной мощности пласта, а также в породах средне- и труднообрушающихся при наличии вторичных осадок основной кровли.

Для предупреждения обрушения не только основной, но и непосредственной кровли, применяется способ управления кровлей частичной закладкой.

Сущность способа состоит в том, что выработанное пространство частично заполняется породой в виде полос, на которые опирается непосредственная кровля. По мере уплотнения породы в полосах кровля прогибается без обрушения вблизи призабойного пространства. Частичную закладку применяют при пологом и наклонном залеганиях в породах 4 класса по классификации ДонУГИ, т.е. когда в непосредственной кровле залегают мощные монолитные и труднообрушающиеся породы или когда над пластом залегает основная кровля при мощности пластов не более 1,5 м.

Управление кровлей частичным обрушением. Назначение способа – не допустить интенсивных вторичных осадок основной кровли. Сущность способа в том, что, как и при частичной закладке, выработанное пространство за пределами призабойного частично заполняется породой в виде полос по простиранию, в остальной части выработанного пространства непосредственная кровля обрушается. Основная кровля при этом не обрушается, а опирается через необрушенные участки непосредственной кровли на бутовые полосы.

Применяют частичное обрушение редко, в породах 2 класса по классификации ВУГИ, когда в непосредственной кровле залегают легкообрушающиеся породы мощностью менее 6-кратной мощности пласта угля при деревянной крепи и менее 3-4-кратной мощности при индивидуальной металлической крепи.

В породах 5 класса по классификации ДонУГИ, т.е. когда в непосредственно над пластом залегают породы, способные плавно опускаться без видимых нарушений или с местными нарушениями без потери связи между отдельными частями кровли, при мощности пласта до 1-1,2 м и при наличии в почве пучащих пород, применяют способ плавного опускания кровли.

Сущность способа состоит в том, что, применяя податливую призабойную и специальную (ограждающую призабойное пространство) крепи, обеспечивают плавный прогиб и опускание кровли на почву без нарушения ее сплошности.

Удержание пород на кострах применяют на тонких крутонаклонных и крутых пластах в породах различных классов. Сущность способа состоит в том, что по мере подвигания очистного забоя выкладываются деревянные костры.

Этот способ характеризуется высокой трудоемкостью и большим расходом леса. Применение этого способа сокращается.

Учитывая, что в кровле пласта проектируемой лавы залегают породы, склонные к обрушению, мощность непосредственной кровли 9,2 метра, что более, чем в 6 раз превосходит мощность пласта, принимаю в проекте способ управления кровлей – полное обрушение.

2.5.5 Выбор типа механизированной крепи

При выемке полезного ископаемого обнаженные вмещающие породы теряют устойчивость и могут обрушаться. Для создания безопасных условий труда и эксплуатации горного оборудования выемка угля сопровождается креплением очистного забоя – процессом установки поддерживающих кровлю (а также почву) конструкций. Сами поддерживающие конструкции называют крепью очистного забоя.

К крепям очистных забоев предъявляются следующие основные требования. Они должны иметь необходимую прочность, т.е. выдерживать без разрушения заданные нагрузки, обладать устойчивостью, т.е. сохранять заданное положение в пространстве, обладать жесткостью, т.е. не допускать деформаций, превышающие установленные для данных условий. Кроме того, крепь должна позволять человеку эффективно работать в очистной выработке, быть безопасной, надежной, долговечной и экономичной.

Применяют следующие виды крепи очистного забоя: индивидуальную (призабойную и посадочную) и механизированную (секционную, комплектную и агрегатную). Секционную крепь по числу опорных стоек разделяют на одностоечную, рамную и кустовую. По материалу индивидуальные крепи бывают металлическими и деревянными, механизированные – только металлическими.

Так как в проекте предусматриваю применение механизированного комплекса МКД90, в состав которого входит механизированная крепь КД90, то лаву предлагаю крепить этой крепью. Технические характеристики данной крепи привожу в таблице №10.

Крепь КД90 состоит из секций оградительно-поддерживающего типа, электро- и гидрооборудования и штрекового оборудования. Секции крепи шарнирно соединены с навесным оборудованием конвейера, которое обеспечивает их установку перпендикулярно рештаку в конце хода передвижки. Каждая секция выполняет функцию забойной и посадочной и передвигается вслед за проходом комбайна.

Таблица 10 – Технические характеристики механизированной крепи МКД90

1МКД90 2МКД90 3МКД90 2МКД90Т 3МКД90Т
Вынимаемая мощность пласта, м 0,8-1,25 1,1-1,5 1,35-2,0 1,1-1,5 1,35-2,0
Шаг передвижки секций, м 800 630 630 630 630

Удельное сопротивление крепи, кН

на 1м2 поддерживаемой кровли:

430 500 550 800 800
Коэффициент гидравлической раздвижности 1,9 2,0 2,0 1,95 1,95
Коэффициент начального распора 0,8 0,8 0,8 0,7 0,7

Сопротивление, кН

одной секции

на 1 м длины лавы

2800

1700

3000

2000

3200

2200

4000

3000

4200

3200

Удельное сопротивление на конце передней консоли перекрытия, кН/м 90 90 90 140 140

Подпор при передвижке секции, кН/м2

10 10 10 15 15
Максимальное рабочее давление в напорной магистрали, МПа 32 32 32 32 32
Шаг расстановки секции крепи, м 1,5 1,5 1,5 1,5 1,5
Коэффициент затяжки кровли 0,9 0,9 0,9 0,9 0,9

Высота секции крепи, мм

минимальная

максимальная

560

1160

710

1420

1000

2000

710

1420

1000

2000

Габариты секций крепи, мм

ширина по оградительному перекрытию

длина

1,5

4,1

1,5

3,542

1,5

3,542

1,5

3,542

1,5

3,542

Масса крепи на 1 м по длине лавы, кг 7200 7190 7190 7190 7190

Основные особенности крепи КД90:

- высокий уровень унификации по типоразмерам (до 90%) основных элементов: оснований, консолей, перекрытий, механизмов передвижения и подъема носка основания, систем управления, что существенно упрощает производство и обслуживание крепей;

- надежность работы благодаря: опережающему прижатию консолей к кровле непосредственно стойками без дополнительных цилиндров; передвижению крепи с подъемом носка основания; наличию четырехзвенного механизма связи перекрытия с основанием, что обеспечивает разгрузку стоек от боковых нагрузок и постоянство размеров от конца консолей до забоя. Особой прочностью отличается перекрытие крепи благодаря отсутствию в нем коробчатых сечений и внутренних сварных швов;

- безопасность труда за счет применения гидравлически управляемых боковых щитов вдоль консолей, основного и оградительного перекрытий.

Системы управления крепью существенно улучшены за счет применения модульных гидрораспределителей, стоечных блоков, установленных непосредственно на стойках, и верхней гидроразведки.

Козырек секции опирается на выдвижную балку, встроенную в оградительное перекрытие.

Оградительное перекрытие с забойной стороны опирается на две гидростойки одинарной раздвижности, а со стороны выработанного пространства шарнирно соединено с кронштейном основания. При раздвижке перекрытие поворачивается относительно основания и его забойная часть, описывая дугу, удаляется от забоя. Для сохранения постоянного расстояния от забойной кромки козырька до забоя применен механизм компенсации, состоящий из двух рычагов, траверсы и выдвижной балки, который выталкивает из полости перекрытия или втягивает в нее выдвижную балку вместе с навешенным на нее козырьком. Этим обеспечивается практически постоянная величина зазора между кромкой козырька и забоем.

Для закрытия зазоров между соседними оградительными перекрытиями и выравнивания секции при ее боковом наклоне служит боковой борт на одной стороне каждой секции, управляемый гидравлическим домкратом, вмонтированным в корпус перекрытия.

Гидростойки секции могут быть установлены в двух положениях: ближе к конвейеру, при котором в исходном положении комплекса крепь подтянута к конвейеру, и ближе к завальной стороне, когда в исходном положении комплекса крепь располагается по оттянутой схеме. В последнем случае обеспечивается удобство управления комбайном из бесстоечного пространства, однако уменьшается сопротивление крепи по поддержанию кровли.

Передвижка крепи производится одним гидродомкратом, посредством которого передвигается и забойный конвейер.

Комплекс 1УКП производится серийно на Дружковском машиностроительном заводе имени 50-летия Советской Украины.

В качестве четырех первых и последних секций крепи предлагаю использовать концевые комплекты 2КК.

Концевые секции с обратными консолями предназначены для механизации процессов поддержания кровли, передвижки конвейера, создания безопасных условия для обслуживающего персонала, при отработке пологих пластов в составе механизированного комплекса.

В зависимости от мощности вынимаемых пластов применяются концевые секции второго или третьего типоразмеров. Концевые секции могут работать как в правом, так и в левом забоях с выполнением перемонтажа отдельных узлов в шахтных условиях.

Концевые секции однотипные, четырехстоечные и имеют шарнирную связь с призабойным конвейером, который осуществляет силовую связь между секциями крепи при их передвижке с опорой на соседние секции.

Крепление и поддержание кровли в рабочем пространстве после прохода комбайна обеспечивается забойными поджимными консолями, жестким перекрытием, опирающимся на четыре гидравлические стойки. Со стороны выработанного пространства секции оснащены обратными консолями. Для обеспечения работы крепи в условиях слабой почвы концевые секции оснащены механизмом для подъема основания при передвижке. Управление осуществляется с соседних загруженных концевых секций.

Наличие обратных консолей на концевых секциях позволяет создать безопасные условия для обслуживающего персонала и снизить расход лесоматериалов.

Техническую характеристику концевых комплектов 2КК привожу в таблице 11.

Таблица 11 – Техническая характеристика концевых комплектов 2КК

Наименование параметра 2 типоразмер 3 типоразмер
Вынимаемая мощность пласта 1,0-1,5 1,35-2,0

Угол падения пласта при подвигании забоя, градус, не более:

по простиранию

по падению или восстанию

25

10

25

10

Сопротивление концевой секции, кН 3000 3000

Удельное сопротивление на 1 м2

поддерживаемой площади, кН/м2

380 380
Рабочее давление, Мпа 32,5 32,5

Давление срабатывания предохранительного клапана

гидростойки, Мпа

39 39
Шаг установки концевых секций, м 1,5 1,5
Шаг передвижки, м 0,8 или 0,63 0,63
Коэффициент затяжки кровли 0,9 0,9

Типоразмер механизированной крепи устанавливаю на основании расчетов допустимой минимальной и максимальной высоты ее по заднему ряду стоек в метрах.

Нminmin(1-a´lз)-q

Нmахmах(1-a´lп),

где тmin – минимальная мощность пласта в метрах,

тmin=m-Dm

тmах – максимальная мощность пласта в метрах,

тmах=m+Dm

Dm – колебания пласта по мощности в пределах выемочного участка в метрах; Dm=0,05 [таб. 5]

тmin=1,3-0,05=1,25

тmах=1,3+0,05=1,35

a – коэффициент сближения пород кровли и почвы, зависящий от класса пород по обрушению; a=0,04 [5, стр. 8]

lп – расстояние от передней стойки до плоскости забоя, м; lп=2,325 [1, стр. 249]

lз – расстояние от задней стойки до плоскости забоя, м; lп=3,615 [1, стр. 249]

q – запас раздвижки на разгрузку крепи от давления пород, м; q=0,05 [5, стр. 9]

Нmin=1,25(1-0,04´3,615)-0,05=1,019

Нmах=1,35(1-0,04´2,325)=1,224

На основании произведенных расчетов принимаю к эксплуатации второй типоразмер крепи 2МКД90, у которого минимальный и максимальный размеры по высоте соответственно равны 0,71 метра и 1,42 метра.

2.5.6 Проверка принятой крепи на прочность 2.5.6.1 Определения давления пород кровли на 1 м2 крепи

Определяю давление пород кровли на 1 м2 крепи по формуле в кН/м2

Qз=hп´gп,

где hп – мощность непосредственной кровли, м; hп=9,2 [таб. 5];

gп – средний удельный вес пород, определяется по формуле

gпп*9,81

Рп – плотность пород; Рп=2,35 [таб. 5]

gп=2,35*9,81=23,05

Qз=9,2´23,05=212,06

Полученное значение должно удовлетворять условию

Qз£Qтех

где Qтех=500 [таб. 10]

212,06£500

Полученное значение удовлетворяет данному требованию.

2.5.6.2 Определение нагрузки на 1 м посадочного ряда

Определяем нагрузку на 1 м посадочного ряда крепи по формуле в кН/м

,

где b – длина секции крепи по перекрытию, м; b=3,542[таб. 10];

l – шаг посадки непосредственной кровли, равен шагу передвижки секции, м; l=0,63 [таб. 10]

Полученное значение должно удовлетворять условию

Rр£Rmax.тех

где Rmax.тех=3000 [таб. 10]

230,94£2000

Полученное значение удовлетворяет данному требованию.

2.5.6.3 Определение давления на одну секцию

Давление пород кровли на одну секцию крепи определяю по формуле в кН

Qc=hп*gп*b*ac,

где ас – шаг установки секций, м; ас=1,5 [таб. 10]

Qc=9,2´23,05´3,542´1,5=1126,67

Полученное значение должно удовлетворять условию

Qc£ Qc.тех

где Qc.тех=3000 [таб. 10]

1126,67£3000

Полученное значение удовлетворяет данному требованию.

По всем выше приведенным проверкам, делаю вывод, что данный типоразмер крепи удовлетворяет всем условиям заданной лавы, и окончательно принимаю для работы в лаве механизированный комплекс МКД90 с механизированной крепью второго типоразмера 2КД90.

2.6 Крепление сопряжения лавы с прилегающими выработками

На сопряжении лавы с прилегающими выработками, в процессе эксплуатации лавы, возникает большое опорное давление, и крепление не выдерживает данного давления, деформируется, уменьшается сечение, уменьшается безопасность из-за обрушения пород кровли. Поэтому целесообразно усиливать крепление сопряжений.

На практике предусматривают различные варианты крепления сопряжений:


Информация о работе «Рациональная отработка пласта k5 в условиях ГХК шахта Краснолиманская»
Раздел: Технология
Количество знаков с пробелами: 132686
Количество таблиц: 27
Количество изображений: 5

Похожие работы

Скачать
174563
29
92

... по ГХК "Краснолиманская Показатели 1999 2000 Отклонение, пунктов Отклонение, % 1. Рентабельность капитала 2. Рентабельность основного капитала 3. Рентабельность производства 4. Рентабельность продаж 26,4 33,3 43,8 30,5 28,1 36,5 48,6 32,7 +1,7 +3,2 +4,8 +2,2 +6,4 +9,6 +11,0 +7,2 2.3 Управление затратами на ...

0 комментариев


Наверх