Войти на сайт

или
Регистрация

Навигация


3.5.3. Излучение цепочки периодически

расположенных источников





d q


Пусть теперь у нас имеется N точечных источников волн, отстоящих один от другого на расстояние d порядка нескольких длин волн. В достаточно удаленной от цепочки источников области наблюдения вызванные соседними источниками колебания будут происходить с разностью фаз

.


На векторной диаграмме представляющие колебания от соседних источников векторы будут повернуты по отношению друг к другу на такой угол.


j/2 x


Nj/2

R j

x0


Эти векторы образуют ломаную, вписанную в окружность радиуса R. Если амплитуда колебаний от одного источника в области наблюдения равна x0, то


и для амплитуды суммарных колебаний мы получаем выражение:


.


При q = 0 будет j = 0 и x0S = Nx0 - векторы расположены вдоль прямой, поскольку разность фаз колебаний от соседних источников равна нулю. Но при больших значениях N уже при малых q (и, соответственно, j) амплитуда суммарных колебаний обращается в нуль:


; .


Таким образом, в направлении j = 0 будет распространяться практически плоская волна.

Но будут и другие направления распространения практически плоских волн. Для этих направлений должны выполняться условие


; -


разность расстояний до некоторой (любой!) точки достаточно удаленной области наблюдения должна равняться целому числу длин волн. При такой разности хода векторы на фазовой диаграмме вновь выстроятся вдоль прямой.

Этот результат мы получили ранее, но теперь мы можем просто определить направления ближайших к данному максимуму k-того порядка минимумов. Для минимумов должны выполняться условия


.


Эти выражения справедливы при


;


(выполняется первое условие), причем (выполняется второе условие). При таких значениях k’ разность хода от соседних источников равна целому числу волн:


, k = 0,1,2 ...


и наблюдаются максимумы излучения.

x0S



0 q

На рисунке показана зависимость амплитуды колебаний от угла q. Линии настолько узки и дополнительные максим столь малы, что их на рисунке не видно. Кривая получена для количества источников N=200 и отношения d/l=3,5.

Обратите внимание: при увеличении модуля q расстояние между линиями увеличивается. Это обстоятельство в дальнейшем будет для нас существенно.


Лекция 4 25


Лекция 4


4. Законы геометрической оптики


4.1. Прямолинейность распространения света.

Принцип Ферма


Физика в разных своих разделах часто занимается вопросами весьма несхожими. В частности оптика никак не представляется логическим продолжением предыдущих разделов, которыми мы с Вами занимались. И хотя свет представляет собой электромагнитную волну, разговором о которой мы закончили предыдущий раздел “Электричество и магнетизм”, вопросами электромагнитной природы света мы будем заниматься не слишком много, нас скорее будет интересовать собственно волновая природа света, а не то, что это волна электромагнитная.

В свою очередь мы не станем подробно говорить об оптике геометрической. Но основные ее законы, видимо, обсудить необходимо. Первым из них является закон прямолинейности распространения света. Выглядит он чрезвычайно простым - между двумя точками свет распространяется вдоль прямой. И достаточно естественно возникает вопрос такого рода: “А как же иначе?”

Действительно, такой “способ” распространения света кажется более чем естественным. Но в дальнейшем возникнут достаточно серьезные трудности для понимания - когда мы встретимся с отклонениями от этого закона. Да и едва ли Вам часто приходилось наблюдать прямолинейное распространение волны - прямолинейность распространения и волновая природа, пожалуй, представляются скорее несовместимыми. Разве что такие два примера.

Примерно плоскими являются морские волны, рожденные ветром и пришедшие к нам с очень большого расстояния. Большое расстояние и плоский характер волны представляются неразрывно связанными. И еще такой пример. Возможно, в кинофильмах о войне Вам случалось обратить внимание на непривычную для современного взгляда форму “динамиков” (тогда они назывались репродукторами) - этакая плоская “тарелка”. В те времена еще не было создано мощных источников звука и достаточно хорошая слышимость достигалась за счет создания по возможности узко направленной в нужном направлении плоской звуковой волны, амплитуда колебаний которой слабо уменьшается с расстоянием.


Прежде всего следует подробнее поговорить о том, что именно мы понимаем под направлением или путем распространения света. Важным здесь оказывается понятие луча. Часто говорят, что, например, солнечный луч можно легко увидеть в слегка запыленном затемненном помещении, если свет проникает в него через небольшое отверстие. Или в тени дерева мы можем видеть отдельные солнечные “зайчики” - места падения лучей, прошедших через промежутки между листьями кроны дерева. Такой “наблюдаемый” луч оказывается прямолинейным и о его отражении и преломлении обычно идет речь при постановке экспериментов.

Но мы знаем, что свет имеет волновую природу и более строго лучем называется кривая (прямая в частном случае), проведенная перпендикулярно касательным к фронтам волны в разных точках. Это уже достаточно абстрактное понятие, то, что мы можем увидеть в слегка запыленной комнате, лишь приблизительно соответствует такому пониманию луча.


A *





* B

Итак, если нет никаких препятствий и среда однородна, то луч света прямолинеен. На рисунке мы соединяем точки A и B прямой и говорим, что свет распространяется вдоль этой прямой. Изображенные пунктирными отрезками касательные к фронтам волны перпендикулярны лучу. Сами фронты не обязательно плоские.

Заметим, что фронт волны образуют точки, в которых фазы колебаний одинаковы. (Вспомним также, что фазой называется аргумент гармонической функции.) Обычно рисуют линии пересечения плоскости рисунка фронтами, на которых достигается максимум амплитуды колебаний. В таком случае говорят о гребнях волн.


Вдоль прямой расстояние между двумя точками минимально. Оказывается, что и в других случаях, когда, например, имеется отражающая поверхность, путь распространения света оказывается таким, что вдоль него время движения волны минимально. Это утверждение называют принципом Ферма - в простейшей, можно сказать, первоначальной формулировке. Эту формулировку нам еще предстоит в дальнейшем уточнять.



Информация о работе «Физика 9-10 класс»
Раздел: Физика
Количество знаков с пробелами: 60852
Количество таблиц: 0
Количество изображений: 21

Похожие работы

Скачать
40220
1
0

... основ и ясно поставленных целей, обучение зачастую сводится к передаче знаний посредством бессистемных методов и приемов. Перестройка школы, совершенствование учебно-воспитательного процесса требуют от учителя особое внимание уделять развитию критического мышления учащихся. [3]   1.3 Физика как основа для развития критического мышления   Безусловно, этот процесс должен быть комплексным, т.е. ...

Скачать
71700
0
0

... приборы (рычажные весы, электроскоп и др.); -работы, выполняемые на приборах, выпускаемых промышленностью. Классификация взята из [1]. В своей книге [2] С.Ф. Покровский показал, что домашние опыты и наблюдения по физике, проводимые самими учащимися: 1)дают возможность нашей школе расширить область связи теории с практикой; 2)развивают у учащихся интерес к физике и технике; 3)будят ...

Скачать
71323
3
0

... пользователя: VI—XI классы. Платформа: Windows. Носитель: компакт-диск. Варианты построения уроков с использованием электронного учебника   1.         Электронный учебник используется при изучении нового материала и его закреплении (20 мин. работы за компьютером). Учащихся сначала опрашивают по традиционной методике или с помощью печатных текстов. При переходе к изучению нового материала ...

Скачать
40136
0
23

... значениями этих параметров, чтобы определить предельные значения и шаг расчёта рассчитываемых параметров. Заключение Хочется выразить уверенность, что в следующих версиях курса "Открытая физика" количество компьютерных моделей будет расти, их функциональные возможности станут разнообразнее, а пределы изменения числовых значений параметров, описывающих эксперименты, будут расширены. Надеемся, что ...

0 комментариев


Наверх