ПРИМЕНЕНИЕ

ЛАЗЕРА

РЕФЕРАТ ПО ФИЗИКЕ

УЧЕНИКА 11 КЛАССА

МОСКОВСКОЙ ГИМНАЗИЧЕСКОЙ ШКОЛОЙ №6

ПЕТРОВА ДМИТИЯ


ВВЕДЕНИЕ

Одним из крупнейших достижений науки и техники XX века, наряду с другими открытиями, является создание генераторов индуцированного электромагнитного излучения – лазеров. В основу их работы положено явление усиления электромагнитных колебаний при помощи вынужденного, индуцированного излучения атомов и молекул, которое было предсказано еще в 1917 г. Альбертом Эйнштейном при изучении им равновесия между энергией атомных систем и их излучением. С этого времени, пожалуй, и начинается история создания лазеров.

Однако в то время никто не обратил внимания на принципиальную ценность этого явления. Никому не были известны способы получения индуцированного излучения и его использования.

В 1940 г., анализируя спектр газового разряда, советский ученый В.А. Фабрикант указал, что, используя явление индуцированного излучения, можно добиться усиления света. В 1951 г., совместно с учеными Ф.А. Бутаевой и М.М. Вудынским, он провел первые опыты в этом направлении.

В 1952 г. ученые трех стран одновременно — в Советском Союзе Н.Г. Басов и А.М. Прохоров, в Соединенных Штатах Америки Ч. Таунс, Дж. Гордон, X. Цайгер и в Канаде Дж. Вебер — независимо друг от друга предложили основанный на использовании явления индуцированного излучения новый принцип генерации и усиления сверхвысокочастотных электромагнитных колебаний. Это позволило создать квантовые генераторы сантиметрового и дециметрового диапазонов, известные сейчас под названием мазеров, которые обладали очень высокой стабильностью частоты. Использование мазеров в качестве усилителей позволило повысить чувствительность приемной радиоаппаратуры в сотни раз. Сначала в квантовых генераторах использовались двухуровневые энергетические системы и пространственная сортировка молекул с различными энергетическими уровнями в неоднородном электрическом поле. В 1955 г. Н. Г. Басов и А. М. Прохоров предложили использовать для получения неравновесного состояния частиц трехуровневые энергетические квантовые системы и внешнее электромагнитное поле для возбуждения.

В 1958 г. была рассмотрена возможность применения этого метода для создания генераторов оптического диапазона (в СССР — Н.Г. Басов. Б.М. Вул, Ю. М.Попов, А. Н. Прохоров; в США — Ч. Таунс и А. Шавлов).

Опираясь на результаты этих исследований, Т. Мейман (США) в декабре 1960 г. построил первый успешно работавший оптический квантовый генератор, в котором в качестве активного вещества был использован синтетический рубин. С созданием оптического квантового генератора на рубине возникло слово «лазер». Это слово составлено из первых букв английского выражения: «light amplification by stimulated emission of radiation» (laser), что в переводе означает «усиление света с помощью индуцированного излучения».

Рубиновый лазер работал в импульсном режиме. Его излучение относилось к красной области видимого диапазона. Возбуждение осуществлялось мощным источником света.

Через год, в 1961 г., американские ученые А. Джаван, В. Беннет и Д. Герриотт построили газовый лазер, в котором в качестве активного вещества применялась смесь газов гелия и неона. Возбуждение активного вещества лазера производилось электромагнитным полем высокочастотного генератора. Режим работы этого лазера был непрерывным.

В 1962 г. в Советском Союзе и в Соединенных Штатах Америки получили индуцированное излучение в полупроводниковом диоде, что означало создание полупроводникового лазера. Впервые на возможность использования полупроводников в качестве активного вещества в лазерах указали еще в 1959 г. советские ученые Н. Г. Басов, Б. М. Вул, Ю. М. Попов. Большая заслуга в создании полупроводникового лазера принадлежит также американскому ученому Р. Холлу. Полупроводниковый лазер возбуждается непосредственно электрическим током. Он работает как в импульсном, так и в непрерывном режиме.

В настоящее время в качестве рабочих веществ в лазерах используются самые различные материалы. Генерация получена более чем на ста веществах: кристаллах, активированных стеклах, пластмассах, газах, жидкостях, полупроводниках, плазме. Рабочим веществом могут служить органические соединения, активированные ионами редкоземельных элементов. Удалось получить генерацию с использованием обычных паров воды и даже воздуха. Создан новый класс газовых лазеров — так называемые ионные лазеры.

Рабочий диапазон существующих оптических квантовых генераторов изменяется от ультрафиолетового излучения с длиной волны 0,3 мкм до инфракрасного с длиной волны 300 мкм.

В чем же все-таки главная ценность этих приборов? В том, что излучение лазеров обладает рядом замечательных свойств. В отличие от света, испускаемого обычными источниками, оно когерентно в пространстве и времени, монохроматично, распространяется очень узким пучком и характеризуется чрезвычайно высокой концентрацией энергии, которая еще недавно казалась фантастической. Это дает возможность ученым использовать световой луч лазера в качестве тончайшего инструмента для исследований различных веществ, выяснения особенностей строения атомов и молекул, уточнения природы их взаимодействия, определения биологической структуры живых клеток.

С помощью луча лазера можно передавать сигналы и поддерживать связь как в земных условиях, так и в космосе принципиально на любых расстояниях. Лазерные линии связи позволяют передавать одновременно значительно большее количество информации по сравнению с традиционными линиями связи, даже самыми совершенными. Кроме того при этом практически к нулю сводятся внешние помехи.

Развитие современных технологий, многих отраслей промышленности, науки и техники, медицины сегодня трудно себе представить без применения лазеров и устройств на их основе.


Глава 1.

ПРИНЦИП ДЕЙСТВИЯ ЛАЗЕРА

Лазеры обычно называют оптическими квантовыми генераторами. Уже из этого названия видно, что в основе работы лазеров лежат процессы, подчиняющиеся законам квантовой механики. Согласно квантово-механическим представлениям, атом, как, впрочем, и другие частицы (молекулы, ионы и др.) поглощают и излучают энергию определёнными порциями – квантами. При обычных условиях в отсутствии каких-либо внешних воздействий атом находится в невозбуждённом состоянии, соответствующем наиболее низкому из возможных энергетическому уровню. В таком состоянии атом не способен излучать энергию. При поглощении кванта энергии атом переходит на более высокий энергетический уровень, то есть возбуждается. Переход атома с одного энергетического уровня на другой происходит дискретно, минуя все промежуточные состояния. Время нахождения атома в возбуждённом состоянии ограничено и в большинстве случаев невелико. Излучая энергию атом переходит снова в основное состояние. Этот переход осуществляется самопроизвольно, в отличие от процесса поглощения квантов, которое является вынужденным (индуцированным).

Лазеры генерируют излучение в инфракрасной, видимой и ультрафиолетовой областях спектра, что соответствует диапазону электромагнитных волн, называемому светом. В связи с этим наиболее интересным представляется рассмотрение механизма взаимодействия атомов именно с этой частью спектра электромагнитных излучений. Свет, как известно, имеет двойственную природу: с одной стороны – это волна, характеризующаяся определённой частотой, амплитудой и фазой колебаний, с другой стороны – поток элементарных частиц, называемых фотонами. Каждый фотон представляет собой квант световой энергии. Энергия фотона прямо пропорциональна частоте световой волны, которая, в свою очередь, определяет цвет светового излучения.

Поглощая фотон, атом переходит с более низкого энергетического уровня на более высокий. При самопроизвольном переходе на более низкий уровень атом испускает фотон. Для атомов конкретного химического элемента разрешены только совершенно определённые переходы между энергетическими уровнями. В следствие этого атомы поглощают только те фотоны, энергия которых в точности соответствует энергии перехода атома с одного энергетического уровня на другой. Визуально это проявляется в существовании для каждого химического элемента индивидуальных спектров поглощения, содержащих определённый набор цветных полос. Фотон, испускаемый атомом при переходе на более низкий энергетический уровень, так же обладает совершенно определённой энергией, соответствующей разности энергий между энергетическими уровнями. По этой причине атомы способны излучать световые волны только определённых частот. Этот эффект наглядно проявляется при работе люминесцентных ламп, часто используемых в уличной рекламе. Полость такой лампы заполнена каким-либо инертным газом, атомы которого возбуждаются ультрафиолетовым излучением, которое возникает при пропускании электрического тока через специальный слой, покрывающий внутреннюю поверхность оболочки лампы. Возвращаясь в основное состояние атомы газа дают свечение определённого цвета. Так, например, неон даёт красное свечение, а аргон – зелёное.

Самопроизвольные (спонтанные) переходы атомов с более высокого энергетического уровня на более низкий носят случайный характер. Генерируемое при этом излучение не обладает свойствами лазерного излучения: параллельностью световых пучков, когерентностью (согласованностью амплитуд и фаз колебаний во времени и пространстве), монохромностью (строгой одноцветностью). Однако, ещё в 1917 году Альберт Эйнштейн предсказал существование наряду со спонтанными переходами на более низкий энергетический уровень индуцированных переходов. В последствии эта возможность была реализована в конструкции лазеров. Сущность этого явления состоит в том, что фотон светового потока, встречая на своём пути возбуждённый атом выбивает из него фотон с точно такими же характеристиками. В результате число одинаковых фотонов удваивается. Вновь образовавшийся фотон, в свою очередь, способен генерировать ещё один фотон, выбивая его из другого возбуждённого атома. Таким образом, число одинаковых фотонов лавинообразно нарастает. Генерируемое при этом излучение характеризуется высокой степенью параллельности пучков светового потока, когерентности и монохромности, так как в нём присутствуют только те фотоны, которые обладают одинаковой энергией и направлением движения.

Очевидно, что индуцированное излучение может возникать только в тех системах, где число возбуждённых атомов достаточно велико. На практике число возбуждённых атомов должно превышать 50% от общего числа атомов в системе. В равновесных системах достижение этого условия невозможно, так как число переходов с ниже лежащего уровня на выше лежащий равно числу обратных переходов. Для получения эффекта индуцированного излучения систему необходимо перевести в неравновесное, а, следовательно, неустойчивое состояние. Кроме того интенсивность внешнего светового потока, предоставляющего исходные фотоны для начала процесса так же должна быть достаточной. Рассмотрим каким образом реализуются эти требования на примере конструкции лазера, построенного с использованием искусственно выращенного кристалла рубина, называемого, обычно, рубиновым лазером.

Лазер состоит из трех основных частей: активного (рабочего) вещества, резонансной системы, представляющей две параллельные пластины с нанесенными на них отражающими покрытиями, и системы возбуждения (накачки), в качестве которой обычно используется ксеноновая лампа-вспышка с источником питания (рис. 1).

Рис 1. Схема рубинового лазера.

Рубин представляет собой окись алюминия, в которой часть атомов алюминия замещена атомами хрома (Al2O3*Cr2O3) Активным веществом служат ионы хрома Cr3+. От содержания хрома в кристалле зависит его окраска. Обычно используется бледно-розовый рубин, содержащий около 0,05% хрома. Рубиновый кристалл выращивают в специальных печах, затем полученную заготовку отжигают и обрабатывают, придавая ей форму стержня. Длина стержня колеблется от 2 до 30 см, диаметр от 0,5 до 2 см. Плоские торцовые концы делают строго параллельными, шлифуют и полируют с высокой точностью. Иногда отражающие поверхности наносят не на отдельные отражающие пластины, а непосредственно на торцы рубинового стержня. Поверхности торцов серебрят, причем поверхность одного торца делают полностью отражающей, другого — отражающей частично. Обычно коэффициент пропускания света второго торца составляет около 10—25%, но может быть и другим.

Рубиновый стержень помещают в спиральную импульсную ксеноновую лампу, витки которой охватывают его со всех сторон. Вспышка лампы длится миллисекунды. За это время лампа потребляет энергию в несколько тысяч джоулей, большая часть которой уходит на нагревание прибора. Другая, меньшая часть, в виде голубого и зеленого излучения поглощается рубином. Эта энергия и обеспечивает возбуждение ионов хрома.

На рис. 2 представлена энергетическая диаграмма, поясняющая принцип работы рубинового лазера. Линии 1, 2, 3 соответствуют энергетическим уровням ионов хрома.

Рис 2. Схема энергетических уровней рубинового лазера.

В нормальном, невозбужденном состоянии ионы хрома находятся на нижнем уровне 1. При облучении рубина светом ксеноновой лампы, содержащим зеленую часть спектра, атомы хрома возбуждаются и переходят на верхний уровень 3, соответствующий поглощению света длиной волны 5600 А. Ширина полосы поглощения этого уровня составляет около 800 А.

С уровня 3 часть возбужденных атомов хрома снова возвращается на основной уровень 1, а часть переходит на уровень 2. Это так называемый безызлучательный переход, при котором ионы хрома отдают часть своей энергии кристаллической решетке в виде тепла. Вероятность перехода с уровня 3 на уровень 2 в 200 раз больше, а с уровня 2 на уровень 1 в 300 раз меньше, чем с уровня 3 на уровень 1. Это приводит к тому, что уровень 2 оказывается более заселенным, чем уровень 1. Иными словами, заселенность получается инверсной и создаются необходимые условия для интенсивных индуцированных переходов.

Такая система крайне неустойчива. Вероятность спонтанных переходов в любой момент времени очень велика. Первый же фотон, появившийся при спонтанном переходе, по закону индуцированного излучения выбьет из соседнего атома второй фотон, переведя излучивший атом в основное состояние. Далее эти два фотона выбьют еще два, после чего их будет четыре, и т. д. Процесс нарастает практически мгновенно. Первая волна излучения, дойдя до отражающей поверхности, повернет обратно и вызовет дальнейшее увеличение числа индуцированных переходов и интенсивности излучения. Отражение от отражающих поверхностей резонатора повторится многократно, и если потери мощности при отражении, вызываемые несовершенством отражающих покрытий, а также полупрозрачностью одного из торцов стержня, через который уже в начале генерации будет вырываться поток излучения, не будут превосходить той мощности, которую приобретает в результате начавшейся генерации формирующийся в стержне лазера луч, то генерация будет нарастать, а мощность увеличиваться до тех пор, пока большинство возбужденных частиц активного вещества (ионов хрома) не отдадут свою энергию, приобретенную в момент возбуждения. Через частично посеребренный торец стержня вырвется луч очень высокой интенсивности. Направление луча будет строго параллельно оси рубина .

Те фотоны, направление распространения которых в начале их возникновения не совпало с осью стержня, уйдут через боковые стенки стержня, не вызвав сколько-нибудь заметной генерации.

Именно многократное прохождение образованной световой волны между торцовыми стенками резонатора без какого-либо существенного отклонения от оси стержня обеспечивает лучу строгую направленность и огромную выходную мощность.


глава 2.

ОБЛАСТИ ПРИМЕНЕНИЯ ЛАЗЕРОВ

Уникальные свойства лазерного луча, многообразие конструкций современных лазеров и устройств на их основе обуславливают широкое применение лазерных технологий в различных областях человеческой деятельности: промышленности, науке, медицине и быту. Появление лазеров и внедрение их во многие отрасли промышленности и науки произвело в этих отраслях в буквальном смысле революцию. Благодаря этому стало возможным развитие новых более эффективных технологий, повышение производительности труда, точности измерений и качества обработки материалов. Рассмотрим здесь лишь наиболее важные области применения лазерной техники.


Информация о работе «Лазер»
Раздел: Физика
Количество знаков с пробелами: 28406
Количество таблиц: 0
Количество изображений: 2

Похожие работы

Скачать
63052
0
0

... , что исследования взаимодействия лазерного излучения с веществом представляют исключительно большой научный интерес. Лазеры находят широкое применение в современных физических, химических и биологических исследованиях, имеющих фундаментальный характер. Ярким примером могут служить исследования в области нелинейной оптики. Как уже отмечалось, лазерное излучение, обладающее достаточно высокой ...

Скачать
61229
7
19

... . Рабочий газ с большой скоростью продувают через область разряда, и джоулево тепло выносится разрядом. Применение быстрой прокачки позволяет поднять плотности энерговыделения и энергосъема. CO2-лазер в медицине применяется почти исключительно как «оптический скальпель» для резания и испарения во всех хирургических операциях. Режущее действие сфокусированного лазерного пучка основано на взрывном ...

Скачать
53266
5
29

... КПД остается открытым и требует дальнейших исследований; энергосъем этих лазеров предполагается увеличить до 40 - 50 Дж/л. 1.2.2 Накачка электрическим разрядом При использовании электроразрядного способа накачки эксимерных лазеров необходимо обеспечить предионизацию активной среды. Предионизация используется для предотвращения дугового разряда и обычно достигается излучающими в УФ диапазоне ...

Скачать
60573
1
0

... -лазер мог бы стать важным элементом энергетики будущего. В частности, работая на космической орбите, он мог бы передавать энергию на Землю в виде мощного лазерного луча. 2. ПРИМЕНЕНИЕ ЛАЗЕРОВ   2.1 ПРИМЕНЕНИЕ ЛАЗЕРНОГО ЛУЧА В ПРОМЫШЛЕННОСТИ И ТЕХНИКЕ   Оптические квантовые генераторы и их излучение нашли применение во многих отраслях промышленности. Так, например, в индустрии наблюдается ...

0 комментариев


Наверх