Войти на сайт

или
Регистрация

Навигация


Решение обратных задач теплопроводности для элементов конструкций простой геометрической формы

15935
знаков
0
таблиц
12
изображений

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ДНЕПРОПЕТРОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ

КАФЕДРА ПГД И ТМО

КУРСОВАЯ РАБОТА


НА ТЕМУ: «РЕШЕНИЕ ОБРАТНЫХ ЗАДАЧ ТЕПЛОПРОВОДНОСТИ ДЛЯ

ЭЛЕМЕНТОВ КОНСТРУКЦИЙ ПРОСТОЙ ГЕОМЕТРИЧЕСКО ФОРМЫ»

ВЫПОЛНИЛА: СТ. ГР. МТ-98-1

ДАЦЕНКО И. Н.

ДНЕПРОПЕТРОВСК

-2001-

Постановки задач о теплообмене между твердым телом или некоторой системой и окружающей средой рассматрива­ются с точки зрения соотношений причина—следствие. При этом к причинным характеристикам теплообменного процесса в теле (сис­теме) в соответствии с принятой моделью отнесем граничные усло­вия и их параметры, начальные условия, теплофизические свойст­ва, внутренние источники тепла и проводимости, а также геометри­ческие характеристики тела или системы. Тогда следствием будет то или иное тепловое состояние, определяемое температурным полем исследуемого объекта.

Установление причинно - следственных связей составляет цель прямых задач теплообмена. Наоборот, если по определенной ин­формации о температурном поле требуется восстановить причин­ные характеристики, то имеем ту или иную постановку обратной задачи теплообмена.

Постановки обратных задач, в отличие от прямых, не соответ­ствуют физически реализуемым событиям. Например, нельзя об­ратить ход теплообменного процесса и тем более изменить течение времени. Таким образом, можно говорить о физической некоррект­ности постановки обратной задачи. Естественно, что при математи­ческой формализации она проявляется уже как математическая некорректность (чаще всего неустойчивость решения) и обратные задачи представляют собой типичный пример некорректно постав­ленных задач в теории теплообмена.

Граничная ОЗТ — восстановление тепловых условий на гра­нице тела. К этому типу задач отнесем также задачу, связанную с продолжением решения уравнения теплопроводности от некоторой границы, где одновременно заданы температура Т( х*, т) и плот­ность теплового потока q( х*, т);

Организация охлаждения конструкции камер сгорания является одним из важнейших вопросов проектирования и по сравнению с другими типами тепловых машин усложняется тем, что тепловые процессы протекают при высоких температурах К и давлениях. Так как высокотемпературные продукты сгорания движутся по камере с очень большой скоростью, то резко возрастают коэффициент конвективной теплоотдачи от горячих продуктов сгорания к стенкам камеры и конвективные тепловые потоки , доходящие в критическом сечении сопла до 23,26 - 69,78. Кроме того, теплообмен в конструкции характеризуется высоким уровнем радиации в камере, что приводит к большим лучистым тепловым потокам /13/.

Вследствие мощных суммарных конвективных и лучистых тепловых потоков в стенке камеры температура ее может достигать значений превышающих (1000 - 1500С. Величина этих потоков определяется значениями режимных параметров, составом продуктов сгорания в ядре газового потока и в пристеночном слое, а также температурой внутренней поверхности конструкции. Из-за изменения диаметра проточной части по длине теплопровод от продуктов сгорания оказывается неравномерным. Неравномерным является также распределение температуры по периметру, обусловленное изменением состава продуктов сгорания.

Коэффициент теплоотдачи от продуктов сгорания определяется с учетом совместного воздействия конвективного и лучистого теплового потоков в соответствующем сечении конструкции узла по значениям параметров (давление, состав и температура продуктов сгорания в ядре газового потока и в пристеночном слое) на установившемся режиме эксплуатации /13/.

Время выхода рассматриваемых конструкций на установившийся тепловой режим соизмеримо и может оказаться даже большим времени их работы при эксплуатации. В этих условиях задача определения теплового состояния в период работы сводится к расчету прогрева их под воздействием высокотемпературных продуктов сгорания /1, 2/.

Рассмотрим следующую схему корпуса камеры сгорания.

На поверхности в сечении располагается по две точки замера, расположенных в диаметрально противоположных точках периметра корпуса.

В сечении I - I корпуса сопла можно представить в виде однослойной неограниченной пластины, двухслойной - сечение II - II (Рис.1).

Расчетные схемы элементов конструкции представлены на рисунке


Информация о работе «Решение обратных задач теплопроводности для элементов конструкций простой геометрической формы»
Раздел: Теплотехника
Количество знаков с пробелами: 15935
Количество таблиц: 0
Количество изображений: 12

Похожие работы

Скачать
44345
0
0

... переключения с акустического анализа на прочностной. ProCAST(UES, CALCOM) Согласно исследованиям , проведенными экспертами NASA, ProCAST признана наиболее мощной и корректной программой для расчета литейных процессов. ProCAST позволяет инженеру-проектировщику рассчитывать и визуализировать в трехмерной постановке процесс течения и отверждения металла в форме, предсказывать микроструктуру, ...

Скачать
432252
17
140

... контактов обеспечивается выбором их материала и конструкции при использовании одноступенчатой системы. В заключение отметим, что в настоящее время начинают широко применяться электрические аппараты с герметизированными контактами и контактами, работающими в глубоком вакууме. Жидкометаллические контакты? Наиболее характерные недостатки твердометаллических контактов следующие: 1. С ростом ...

Скачать
318063
13
95

... , при обработке металлов давлением. Экспериментальные исследования процессов пластической деформации металла в зоне формирования соединения при контактной точечной сварке по этой методике проводятся на натурных образцах с предварительно нанесенной координатной сеткой, технология изготовления которых предложена и описана в работе [128]. При исследованиях пластических деформаций в плоскостях ...

Скачать
78392
0
5

... и трещинами. Решение построено на использовании теории функции комплексного переменного и удовлетворении граничным условиям методом наименьших квадратов. 1 Термодинамические основы термоупругости   1.1 Термоупругость Основное уравнение термоупругости. При термическом расширении изотропное тело деформируется таким образом, что компоненты деформации  отнесенные к системе прямоугольных осей ...

0 комментариев


Наверх