Войти на сайт

или
Регистрация

Навигация


Математическая модель метода главных компонент

13670
знаков
0
таблиц
3
изображения
Министерство высшего образования Российской Федерации Кубанский государственный университет Кафедра численного анализа ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

к курсовой работе по предмету

статистический анализ в экономике

 

тема курсовой работы:

«Математическая модель метода главных компонент».

 Выполнил : студент гр. 42

 

 

Руководитель : доц. каф. численного анализа

 …

Краснодар

2001

РЕФЕРАТ

Курсовая работа содержит 14 страниц, 1 рисунок,

3 источника, 1 приложение.

МОДЕЛЬ, ГЛАВНАЯ КОМПОНЕНТА, КОРРЕЛЯЦИЯ, СОБСТВЕННЫЙ ВЕКТОР, ХАРАКТЕРНЫЙ ПРИЗНАК.

Целью работы являлось составление программы, реализующей выделение в данном факторном пространстве исходных признаков m главных компонент, или обобщенных признаков. Характерной особенностью пространства главных компонент является его ортогональность.

В результате выполнения курсовой работы была изучена математическая модель процесса поиска главных компонент, а также приемы программной реализации этого метода на языке программирования Turbo Pascal 7.0.

СОДЕРЖАНИЕ

Введение ……………………………………………………….4

1    Краткие теоретические сведения…………………………..5

2    Описание программной реализации……………………….7

Заключение……………………………………………………..9

Приложение А – Текст программы метода главных компонент………………………………………………………10

ВВЕДЕНИЕ

Из числа методов, позволяющих обобщать значения элементарных признаков, метод главных компонент выделяется простой логической конструкцией и в то же время на его примере становятся понятными общая идея и целевые установки многочисленных методов факторного анализа.

Метод главных компонент дает возможность по m – числу исходных признаков выделить m главных компонент, или обобщенных признаков. Пространство главных компонент ортогонально.

Математическая модель метода главных компонент базируется на логичном допущении, что значения множества взаимосвязанных признаков порождают некоторый общий результат.

1    Краткие теоретические сведения

Решение задачи методом главных компонент сводится к поэтапному преобразованию матрицы исходных данных X (рисунок 1.1):


Рисунок 1.1 – Схема математических преобразований

На рисунке обозначено: X – матрица исходных данных размерностью n*m (n – число объектов наблюдения, m – число элементарных аналитических признаков); Z – матрица центрированных и нормированных значений признаков, элементы матрицы вычисляют по формуле: ; R – матрица парных корреляций: R = (1/n)*Z’*Z.

Если предварительнаястандартизация данных не проводилась, то на данном шаге получают матрицу S = (1/n)*X’*X, элементы матрицы X для расчета будут центрированными величинами.

Опишем дальнейшие шаги вычислений для метода главных компонент и объясним математический смысл полученных результатов.

Λ – диагональная матрица собственных (характеристических) чисел.

Множество решений λj находят решением характеристического уравнения |R - λE| = 0. λj – это характеристики вариации, точнее, показатели дисперсии каждой главной компоненты. Суммарное значение Σλj равно сумме дисперсий элементарных признаков Xj. При условии стандартизации исходных данных, эта сумма равна числу элементарных признаков m.

Решив характеристическое уравнение, находят его корни λj. После этого вычисляют собственные векторы матрицы R. Реально это означает решение m систем линейных уравнений для каждого λj при j = 1..m. В общем виде система имеет вид:

 (1.1)

Приведенная система объединяет однородные линейные уравнения, и так как число ее уравнений равно числу неизвестных, она имеет бесконечное множество решений. Конкретные значения собственных векторов при этом можно найти, задавая произвольно по крайней мере величину одной компоненты каждого вектора.

A – матрица факторного отображения, ее элементы arj – весовые коэффициенты. Вначале A имеет размерность m*m – по числу элементарных признаков Xj, затем в анализе остается r наиболее значимых компонент, r ≤ m. Вычисляют матрицу A по известным данным матрицы собственных чисел Λ и нормированных собственных векторов V по формуле A = VΛ1/2.

F – матрица значений главных компонент размерностью r*n, F = A-1Z’. Эта матрица в общем виде записывается:


(1.2)


Информация о работе «Математическая модель метода главных компонент»
Раздел: Статистика
Количество знаков с пробелами: 13670
Количество таблиц: 0
Количество изображений: 3

Похожие работы

Скачать
110494
1
6

... , необходимых для разработки и эксплуатации задач. ГЛАВА 2. МАТЕМАТИЧЕСКОЕ ОБЕСПЕЧЕНИЕ КОМПЛЕКСА ЗАДАЧ "ОЦЕНКА ЭФФЕКТИВНОСТИ ФУНКЦИОНИРОВАНИЯ ВОЕННО-МЕДИЦИНСКОГО УЧРЕЖДЕНИЯ” 2.1 Постановка задачи и её спецификация Основной целью разработки КЗ “Оценка эффективности работы военного госпиталя методом главных компонент” является автоматизация обработки статистических данных, представляющих собой ...

Скачать
271660
12
27

... параметров в случае резкого перехода к новой рыночной ситуации. Глава 2. Обоснование методов поддержки принятия решений по управлению процентным риском портфеля ГКО–ОФЗ в посткризисный период. §2.1. Иммунизация процентного риска портфеля ГКО–ОФЗ от непараллельных перемещений временной структуры процентных ставок. Процентный риск владельца портфеля облигаций существенно зависит от того, в какой ...

Скачать
75818
3
7

... параметрами, показателями объекта именно в то время. Дискретные модели отображают состояние объекта управления в отдельные, фиксированные моменты времени. Имитационными называют экономико-математические модели, используемые с целью имитации управляемых экономических объектов и процессов с применением средств информационной и вычислительной техники. По типу математического аппарата, применяемого в ...

Скачать
26455
2
4

... на них, оценки тех­нико-экономических показателей и, в завершении, построения экономико-математической модели предприятия. В экономико-математической модели в целевую функцию должен вводиться тот или иной фактор неопределенности. В дальнейшем будет приведена разработка методика учета факторов неопределенности, показаны математические моде­ли снятия неопределенности. Крайне важным является оценка ...

0 комментариев


Наверх