1. ВВЕДЕНИЕ

Область применения созданного программного продукта - дистанцион­ное образование по специальности 220400 "Программное обеспечение вычис­лительной техники и автоматизированных систем" для дисциплин, связанных с компьютерной графикой и искусственным интеллектом. Возможно использо­вание для других специальностей и других форм обучения, а также всеми же­лающими более детально изучить отдельные вопросы машинной графики, представления и использования знаний.

Область создания образовательных программ освоена достаточно широ­ко, разработана масса обучающих программ, в частности, проект "Создание единой образовательной системы дистанционного образования (СДО) для тех­нических университетов России. " Однако ранее разработанные СДО обладают целым рядом недостатков:

- жесткая привязанность к предметной области;

жесткая структура программы, исключающая ее модификацию поль­
зователем;

жесткий курс обучения исключающий возможность его пополнения и
перенастройки.

Основной недостаток этих программ - обучение фактически заменяется на демонстрацию пользователю некой информации из предметной области без контроля обучаемого и привития практических навыков, в лучшем случае это наличие контрольных вопросов по теоретическому курсу.

Ожидаемые результаты работы созданной образовательные среды "Гео­метрические преобразования" для дисциплины "Компьютерная графика" и "Продукционные системы" для дисциплины "Системы искусственного интел­лекта" — повышение эффективности восприятия информации и привитие прак­тических навыков. А также увеличение времени затраченного преподавателем на разработку курса за счет уменьшения затраченного преподавателем времени на представление информации и привитие практических навыков у студентов.

Научно-техническая и практическая ценность ожидаемых результатов работы.

Научно-техническая ценность результатов связана с разработкой методи­ческих рекомендаций и инструкций по созданию образовательных сред для различных специальностей.

Практическая ценность связана с созданием образовательных средств для конкретных дисциплин и использование СДО в учебном процессе.

2. АНАЛИТИЧЕСКИЙ ОБЗОР, ПОСТАНОВКА ЗАДАЧИ

2. 1. Анализ существующих подходов, моделей, методов

Программное обеспечение для компьютеризованного обучения прошло в своем развитии несколько этапов. На первом этапе использования ЭВМ в учеб­ном процессе разрабатывались программы автоматизации отдельных этапов расчетных, проектных, графических и других работ в ходе лабораторных и практических занятий, курсового и дипломного проектирования. В это же вре­мя появились первые программы контроля и оценки знаний обучаемых, про­граммированного обучения в тестовом режиме. Позже акцент сместился к раз­работке программного обеспечения автоматизированных обучающих систем, обеспечивающих не только обучение конкретным знаниям, но и проверку отве­тов обучаемых интеллектуальную их интерпретацию, возможность подсказки и другие функции. На этом этапе была осознана необходимость интерактивных режимов работы, использования средств машинной графики и методов искус­ственного интеллекта, а также наличие инструментальных средств разработки обучающих программ. Следующий этап связан с новым содержанием, вклады­ваемым в понятие компьютеризованного обучения, а именно с дистанционным образованием.

Автоматизация проектирования и разработки программного обеспечения образовательных сред дистанционного образования требует разграничения ме­жду программными средствами, обеспечивающими коммуникационную ин­фраструктуру для образовательных технологий ДО, специализированными ин­формационно-образовательными средами и курсами ДО и инструментальными средствами разработки обучающих программ ДО. Именно последняя группа в форме интегрированной системы принимается как базовое программное обес­печение ДО.

К основным видам компьютерных программ, разработанных для усовер­шенствования учебного процесса относятся следующие:

- электронный учебник;

образовательная среда;

лабораторный практикум;


тренажер;

контролирующая программа;

- база данных.

Цель анализа - определение функциональных характеристик, функцио­нальных и структурных составляющих обучающего ПО с учетом потребностей дистанционного образования.

2. 1. 1. Электронный учебник

Электронный учебник - программно-методический комплекс, обеспечи­вающий возможность самостоятельно освоить учебный курс или его большой раздел. Он соединяет в себе свойства обычного учебника, справочника, задач­ника и лабораторного практикума.

Следует выделить два из основных требований к электронным учебни­кам:

— электронный учебник должен позволять изучить курс, пользуясь толь­ко книгой и входящим в учебник ПО;

- электронный учебник должен предоставлять обучаемому оптимальное
сочетание различных способов изучения курса.

Можно отметить следующие особенности методологического подхода, основанного только на электронном учебнике.

- Необходимость обеспечения самостоятельного освоения материала
полностью исключает преподавателя из процесса обучения, оставляя
за ним решение учебно-методических задач на стадии создании элек­
тронного учебника и настройки ПО на конкретный учебный процесс.
Требование о предоставлении обучаемому оптимального сочетания
различных способов изучения курса приводит к необходимости реали­
зации в ПО электронных учебников различных методических прие­
мов, доступных преподавателю-разработчику, что влечет за собой ус­
ложнение структуры и громоздкость ПО. Но при этом обучаемый сам
выбирает кажущуюся ему удобной форму обучения, тогда как это
должен делать преподаватель или обучающая программа при условии
формирования в ней модели обучаемого.

- Следствием вышесказанного является высокая стоимость разработок:
- затраты на разработку ПО, обеспечивающего 1 час курса, оценены в
10 тысяч долларов США; - затраты на разработку 6-семестрового автоматизированного курса по высшей математике оцениваются в 3-5
миллионов долларов США.

- Многие проблемы, перечисленные выше, могут быть решены при ис­
пользовании методов искусственного интеллекта на этапе формирова­
ния учебного материала и сценария учебника.

- Использование методов искусственного интеллекта позволяет значи­
тельно повысить гибкость и сравнительно легкую модифицируемость
сценария электронного учебника.

- Занимательность представляемого учебного материала обеспечивается
использованием средств машинной графики, а простота работы с ПО
поддерживается специально разрабатываемыми интерфейсами обучаемого.

- В большинстве действующих ПО электронных учебников существует база данных контроля знаний обучаемых.

2. 1. 2. Образовательная среда

Следующим видом компьютерных обучающих программ являются обра­зовательные среды - обучающее ПО, которое позволяет оперировать с объек­тами определенного класса. Среда реализует отношения между объектами, операции над объектами и отношениями, соответствующие их определению, а также обеспечивает наглядное представление объектов и их свойств. Обучае­мый оперирует объектами среды, руководствуясь методическими указаниями в целях достижения поставленной дидактической цели, либо производит иссле­дование, цели и задачи которого поставлены обучаемым самостоятельно. Особенности методологии образовательных сред:

- образовательная среда как средство обучения предоставляет возможность развития наивысших, продуктивных форм мышления;

основной функцией ПО образовательной среды является моделирование;

визуализация процесса моделирования требует использования разнообраз­
ных средств машинной графики;

достижение реальной самостоятельности обучаемого возможно при исполь­
зовании методов искусственного интеллекта, для чего необходимо: - час­
тично заменить алгоритмическую часть ПО образовательной среды на дек­
ларативное описание в форме базы знаний; - заменить частично управляю­
щую часть ПО образовательной среды механизмом логического вывода; -
предоставить обучаемому возможность изменения содержания базы знаний;

образовательная среда ориентирована на самостоятельную работу, но тем не
менее должна иметь определенные виды контроля или протоколирования
действий пользователя, что с применением методов искусственного интел­
лекта поможет сформировать модель обучаемого.

2. 1. 3. Лабораторный практикум

ПО лабораторного практикума служит для проведения наблюдений над объектами, их взаимосвязями или некоторыми их свойствами, для обработки результатов наблюдения, для их численного и графического представления и для исследования различных аспектов использования этих объектов на практи­ке.

Одно из основных требований к лабораторному практикуму имеет сле­дующий вид: должны быть четко определены цели эксперимента, описаны средства и методики проведения эксперимента, методы обработки и анализа экспериментальных данных, формы отчета.

Следует отметить, что лабораторный практикум по своему определению и поставленным целям должен быть составной частью образовательной среды. Функции включаемых в ПО лабораторных практикумов средств машинной

графики должны включать возможности деловой и научной графики для ви­зуализации различных графиков, кривых, поверхностей и других абстрактных математических объектов. ПО лабораторного практикума должно включать средства редактирования для представления отчета и определенные виды кон­троля выполненного задания.

2. 1. 4. Тренажер

ПО тренажеров служит для обработки и закрепления технических навы­ков решения задач. Тренажеры обеспечивают получение теоретической ин­формации и описание приемов решения задач, тренировку на различных уров­нях самостоятельности, контроль и самоконтроль и должны включать следую­щие режимы работы: теория, демонстрация примеров, работа с репетитором, самостоятельная работа, самоконтроль.

Среди основных требований к ПО тренажеров выделим следующие:

в режиме репетитора желательно предусмотреть все возможные пути
решения;

путь продвижения должен определяться самим обучаемым.

Особенности методологии тренажеров.

Желание «предусмотреть все возможные пути решения» значительно
усложняет ПО тренажеров и реально достижимо только для формали­
зованных задач и алгоритмов.

ПО тренажера должно включать средства редактирования и базу кон­
троля знаний.

Обучаемый должен решать только те задачи, которые предлагает тре­
нажер, и не может самостоятельно сформулировать аналогичную за­
дачу для решения, что вызвано отсутствием интеллектуализации ПО
тренажеров.

— Интеллектуализация тренажеров для повышения самостоятельности действий обучаемого и одновременное усложнение решаемых задач трансформирует тренажеры в образовательные среды.

- Расширение круга задач, навыки решения которых отрабатывает и за­
крепляет тренажер, требует использования средств машинной графи­
ки.

- требование о возможности получения любых комплексных справок по всему курсу максимально увеличивает трудоемкость разработки тре­буемых баз данных;

— решение указанных проблем возможно путем использования интеллек­туальных баз данных текстового типа.

Все современные концепции построения обучающих систем при их глу­боком, осмысленном представлении достаточно примитивны по своей сути. Если исключить из рассмотрения безусловно красивый, но для нас в данном случае совершенно неважный интерфейс, исключить обилие выводимого оцифрованного видеоизображения, звуковые эффекты и т. п., то большинство современных обучающих систем функционируют по приблизительно одной нехитрой стратегии.

Суть ее состоит в следующем: обучаемому предоставляется достаточно широкий информационный канал, по которому он получает информацию обу­чающего, а скорее познавательного характера. В данном случае обучаемому уготована роль стороннего наблюдателя за происходящим, что в совокупности с обилием выдаваемой информации приводит к тому, что постепенно человек запутывается в этом информационном потоке, либо что-то пытается усвоить и часто формирует у себя неверное представление о предмете, изучаемым таким образом.

Кроме того, даже в случае успешного запоминания обучаемым передан­ного материала вероятность того, что он сможет использовать его в дальней­шем без посторонней помощи достаточно невелика. Дело в том, что после вы­дачи всей обучающей информации большинство обучающих систем в лучшем случае проводит небольшое контрольное тестирование по теоретическим во­просам или стандартным задачам, описанным же в выдаваемой информации. Таким образом, получив достаточный объем обучающей информации, пусть даже в виде прекрасно подготовленного курса, по конкретной теме, обучаемый по окончании работы с системой не имеет достаточного практического опыта для применения на практике полученных знаний и дальнейшем ему могут по­надобится дополнительные практические занятия или непосредственные заня­тия с преподавателем - составителем учебного курса для системы дистанцион­ного образования, что в конечном итоге сводит на нет всю ценность разрабо­танной обучающей системы и ставит под сомнение смысл ее разработки.

Для устранения указанных недостатков в разработанной системе дистан­ционного образования изначально была заложена принципиально иная концеп­ция, в основном направленная на формирование у обучаемых достаточно хо­роших практических навыков по изучаемым курсам. Этой цели подчинены 75% режимов работы созданной системы.

Разработчиками сделана попытка заложить в разработанную систему не­которую универсальность путем определения в ней некоторого расширяемого небольшого набора примитивов: "текст", "рисунок", "трехмерная модель объ­екта", что позволяет достаточно легко перенастраивать систему на ряд "родст­венных" курсов, а при расширении количества примитивов расширяется спи­сок возможных дисциплин, которые могут быть заложены в систему. Очевид­но, что указанная универсальность довольно относительна и создать универ­сальную обучающую систему с широкими возможностями по привитию практического опыта если и возможно, то весьма проблематично.

В данном случае такой задачи и не ставилось, разработанная система из­начально предполагалась для дисциплин "Компьютерная графика" и "Системы искусственного интеллекта" а также для близких с ними дисциплин. Использо­вание одного и того же набора примитивов для создания курсов по указанным дисциплинам привело к тому, что при последовательном их изучении происхо­дит плавный переход от одной дисциплины к другой. Часть указанных прими­тивов имеет режим динамической работы с ними. Интерактивная работа с при­митивами более интересна обучаемому, нежели простое созерцание выдавае­мой информации по его чисто человеческой природе, что положительно сказы­вается на повышении эффективности обучения.

Кроме новизны самой концепции построения обучающей среды, в разра­ботанной системе заложен целый ряд новых подходов и методов, примени­тельно к конкретным рассматриваемым дисциплинам ("Компьютерная графи­ка" и "Системы искусственного интеллекта").

Геометрическая модель вводится как совокупность изменяемых и неиз­меняемых структур данных, однозначно определяющих моделируемый трех­мерный объект. Изменяемая компонента структур данных модели определяет привязку объекта к системе отсчета. Неизменяемая компонента определяет ха­рактеристики самого объекта с помощью топологических элементов и отноше­ний между ними. Изменяемая информация задается линейной списковой структурой дескриптором вершин 8(Х, У, 2), содержащим координаты каждой вершины. Неизменяемая информация представляется отношениями между то­пологическими элементами моделируемого объекта.

Получение искомого геометрического преобразования происходит по­средством накапливания элементарных преобразований в матрице результи­рующего преобразования при последовательном ее домножении на матрицы элементарных геометрических преобразований.

Опыт обучения вопросам геометрических преобразований показывает, что рассматриваемые в среде задачи, соответствующие алгоритмам геометри­ческих преобразований следует распределить по трем уровням сложности сле­дующим образом:

высший получение любого преобразования относительно произвольной плоскости, заданной несколькими способами.

средний получение любого преобразования относительно произвольной прямой.

низший получение любого преобразования относительно произвольной точки, а так же элементарные геометрические преобразования.

Основным связывающим звеном между дисциплинами "Компьютерная графика" и "Искусственный интеллект" является способ решения задач геомет­рических преобразований с помощью механизма логического вывода продук­ционных систем. При всем разнообразии задач геометрических преобразований их решение процедурными методами привело бы к значительному увеличению объема и трудоемкости написания программы, а также существенному сниже­нию гибкости. Реализованный в разработанной системе способ решения гео­метрических задач с помощью продукционных систем позволил добиться аб­солютной гибкости, т. е. преподаватель может вводить в курс все возможные задачи. Подобный подход позволяет таким образом построить выполнение за­дач геометрических преобразований, что становиться возможным реализовать все возможные преобразования в одном механизме вывода за счет использова­ния соответствующей базы знаний.

Разработанный способ используется в системе для решения следующих подзадач: во-первых, он заложен в саму программу для выполнения постоянно необходимых преобразований; во-вторых, на примере этого метода построено обучение по курсу "Продукционные системы", что весьма положительно, т. к. предмет осваивается обучаемым на конкретном примере из той области, с ко­торой он ранее ознакомился с другой стороны.

2. 2. Постановка задачи

Для обеспечения функционирования разработанной системы дистанци­онного образования во всех предусмотренных режимах необходимо было ре­шить следующие задачи:

1) теоретического плана:

- разработка способа представления информации о трехмерных геомет­рических объектах. Установление связей в разрабатываемых структу­рах и формальное описание преобразований, представленных таким образом;

- разработка универсального метода получения геометрических преоб­разований объектов на основе разработанного механизма вывода;

- разработка способов обучения методам геометрических преобразова­
ний, как примера использования продукционных систем.

2) Практического плана:

реализация разработанного универсального способа получения гео­
метрических преобразований на основе продукционных систем;

разработка блока демонстрации формирования последовательности
преобразований и контроля действий обучаемым;

- разработка блока выдачи задания обучаемому для самостоятельной
работы с учетом уровня сложности и блока контроля правильности
выполнения полученного задания.

2. 3. Обоснование выбора подхода и метода решения по­ставленной задачи

В основе разработанной системы лежит использование продукционных систем для решения задач геометрических преобразований. Основные доводы в пользу такого выбора:

Как отмечалось выше в главе анализа существующих подходов, алго­
ритмические методы нахождения последовательности геометрических
преобразований явно неэффективны, следовательно необходим дру­
гой подход.

Использование связки "Продукционные системы + геометрические
преобразования" выгодно с той точки зрения, что эти два понятия
легко связать в единую работающую систему.

Разрабатываемая программа становится компактной, легкоизменяе­
мой только за счет изменения базы знаний.

Механизм вывода при работе с используемым представлением объек­
тов очень прост.

Реализация универсального метода нахождения всех возможных по­
следовательностей геометрических преобразований в данном случае
значительно упрощается.

Построение учебного материала по курсу "Продукционные системы"
на основе заложенных в системе методов довольно наглядно, позво­
ляет использовать те же примитивы, что и для курса "Геометрические
преобразования", позволяет осуществить легкий переход от одного
учебного курса к другому, следовательно легко освоить "Продукци­
онные системы" и пополнить свой опыт в графике.

Использование продукционных систем, и одного и того же механизма
вывода позволяет реализовать визуализацию информации о графиче­
ском объекте, организовать построение новых структур подобного
рода самим обучаемым, организовать контроль этого процесса как
частично, так и для всей совокупности структур в целом, т. е. реализо­
вать все практические задачи, поставленные выше.


Информация о работе «Разработка образовательной среды для дистанционного обучения по дисциплинам Компьютерная графика и Системы искусственного интеллекта. Геометрические преобразования»
Раздел: Информатика, программирование
Количество знаков с пробелами: 114125
Количество таблиц: 10
Количество изображений: 8

Похожие работы

Скачать
277842
1
5

... современным компьютерам, должна стать мощным усилителем мыслительных процессов в образовании. И здесь особая роль отводится преподавателям, которые являются носителями технологии образования и которые должны творчески переосмыслить накопленный интеллектуальный багаж в соответствии с новыми технологическими возможностями. До настоящего времени в российском обществе отсутствует четкое понимание ...

Скачать
188099
34
8

... области психологической науки – психологии компьютеризации.  Ее предмет – порождение, функционирование и структура психологического отражения в процессе деятельности, связанной с содержанием и использованием компьютерной техники и ее программного обеспечения. Роль компьютера в учебном процессе абсолютизируется, подчас высказывается мнение, что компьютер может полностью заменить учителя, и что ...

Скачать
114347
2
66

... и закрепление знаний учащихся; - умение наблюдать химические явления; - развитие интеллектуальных способностей и формирование абстрактного мышления. [4] 3. Дидактические подходы при изучении темы «Молекулярные перегруппировки» Дидактика – область педагогики, разрабатывающая общую теорию образования и обучения и занимающаяся содержанием образования, закономерностями процесса обучения, ...

Скачать
107377
30
9

... воспринимаются даже на высоком научном уровне. Стремление упростить материал вряд ли целесообразно. Глава 3. Методические рекомендации курса «Математические основы моделирования 3D объектов» базового курса «компьютерное моделирование» для студентов педагогических ВУЗов специальности преподаватель информатики §1. Принципы построения электронного учебника Прежде чем рассмотреть ...

0 комментариев


Наверх