Адаптированный метод асимметричного шифрования

Защита информации в системах дистанционного обучения с монопольным доступом
Вопросы защиты информации, стоящие перед автоматизированными системами дистанционного обучения Возможность модификации программного кода системы тестирования с целью изменения алгоритма выставления оценок Возможность модификации программного кода системы тестирования, с целью изменения алгоритма выставления оценок или другого кода Выводы Шифрование данных Асимметричные криптосистемы Адаптированный метод асимметричного шифрования Функциональность системы защиты Краткая характеристика среды Visual C++ Общие принципы работы полиморфных алгоритмов шифрования и расшифрования Виртуальная машина для выполнения полиморфных алгоритмов Генератор полиморфного кода Таблицы блоков для генерации полиморфного кода Особенности реализации модуля защиты Руководство программиста по использованию модуля Uniprot.dll Руководство программиста по использованию программы ProtectEXE.exe Подключение модуля защиты к программе на языке Visual Basic Пример использования программы ProtectEXE.exe Виртуальная память, используемая в алгоритме, заполняется случайными значения
284992
знака
7
таблиц
0
изображений

2.2.3. Адаптированный метод асимметричного шифрования

Рассмотренные ранее методы построения асимметричных алгоритмов криптопреобразований хоть и интересны, но не достаточно хорошо подходят для решаемой задачи. Можно было бы взять реализацию уже готового асимметричного алгоритма, или согласно теоретическому описанию, реализовать его самостоятельно. Но, во-первых, здесь встает вопрос о лицензировании и использовании алгоритмов шифрования. Во-вторых, использование стойких криптоалгоритмов связано с правовой базой, касаться которой бы не хотелось. Сам по себе стойкий алгоритм шифрования здесь не нужен. Он просто излишен и создаст лишь дополнительное замедление работы программы при шифровании/расшифровании данных. Также планируется выполнять код шифрования/расшифрования в виртуальной машине, из чего вытекают большие трудности реализации такой системы, если использовать сложные алгоритмы шифрования. Виртуальная машина дает ряд преимуществ, например, делает более труднодоступной возможность проведения некоторых операций. В качестве примера можно привести проверку алгоритмом допустимого срока своего использования.

Отсюда следует вывод, что создаваемый алгоритм шифрования должен быть достаточен прост. Но при этом он должен обеспечивать асимметричность и быть достаточно сложным для анализа. Именно исходя из этих позиций берет свое начало идея создания полиморфных алгоритмов шифрования.

Основная сложность будет состоять в построении генератора, который должен выдавать на выходе два алгоритма. Один – для шифрования, другой – для расшифрования. Ключей у этих алгоритмов шифрования/расшифрования нет. Можно сказать, что они сами являются ключами, или что они содержат ключ внутри. Они должны быть устроены таким образом, чтобы производить уникальные преобразования над данными. То есть два сгенерированных алгоритма шифрования должны производить шифрования абсолютно различными способами. И для их расшифровки возможно будет использовать только соответствующий алгоритм расшифрования, который был сгенерирован в паре с алгоритмом шифрования.

Уникальность создания таких алгоритмов должен обеспечить полиморфный генератор кода. Выполняться такие алгоритмы будут в виртуальной машине. Анализ таких алгоритмов должен стать весьма трудным и нецелесообразным занятием.

Преобразования над данными будут достаточно тривиальны, но практически, вероятность генерации двух одинаковых алгоритмов должна стремиться к нулю. В качестве элементарных действий следует использовать такие нересурсоемкие операции, как сложение с каким-либо числом или, например, побитовое "исключающее или" (XOR). Но повторение нескольких таких преобразований с изменяющимися аргументами операций (в зависимости от адреса шифруемой ячейки) делает шифр достаточно сложным. Генерации каждый раз новой последовательности таких преобразований с участием различных аргументов усложняет анализ алгоритма.


2.3. Преимущества применения полиморфных алгоритмов шифрования

К преимуществам применения полиморфных алгоритмов шифрования для систем, по функциональности схожим с АСДО, можно отнести следующие пункты:

слабая очевидность принципа построения системы защиты;

сложность создания универсальных средств для обхода системы защиты;

легкая реализация системы асимметрического шифрования;

возможность легкой, быстрой адаптации и усложнения такой системы;

возможность расширения виртуальной машины с целью сокрытия части кода.

Рассмотрим теперь каждый их этих пунктов по отдельности и обоснуем эти преимущества. Можно привести и другие удобства, связанные с использование полиморфных механизмов в алгоритмах шифрования. Но, на мой взгляд, перечисленные преимущества являются основными и заслуживающими внимания.

1) Слабая очевидность принципа построения системы защиты, является следствием выбора достаточно своеобразных механизмов. Во-первых, это само выполнение кода шифрования/расшифрования в виртуальной машине. Во-вторых, наборы полиморфных алгоритмов, уникальных для каждого пакета защищаемого программного комплекса. Это должно повлечь серьезные затруднения при попытке анализа работы такой системы с целью поиска слабых мест для атаки. Если система сразу создаст видимость сложности и малой очевидности работы своих внутренних механизмов, то скорее всего это остановит человека от дальнейших исследований. Правильно построенная программа с использованием разрабатываемой системой защиты может не только оказаться сложной на вид, но и быть такой в действительности. Выбранные же методы сделают устройство данной системы нестандартным, и, можно сказать, неожиданным.

2) Сложность создания универсальных средств для обхода системы защиты заключается в возможности генерации уникальных пакетов защищенного ПО. Создание универсального механизма взлома средств защиты затруднено при отсутствии исходного кода. В противном случае необходим глубокий, подробный и профессиональный анализ такой системы, осложняемый тем, что каждая система использует свои алгоритмы шифрования/расшифрования. А модификация отдельного экземпляра защищенного ПО интереса не представляет. Ведь основной упор сделан на защиту от ее массового взлома, а не на высокую надежность отдельного экземпляра пакета.

3) Легкая реализация системы асимметрического шифрования, хоть и является побочным эффектом, но очень полезна и важна. Она представляет собой следствие необходимости генерировать два разных алгоритма, один для шифрования, а другой для расшифрования. На основе асимметрического шифрования можно организовать богатый набор различных механизмов в защищаемом программном комплексе. Примеры такого применения будут даны в других разделах данной работы.

4) Возможность легкой, быстрой адаптации и усложнения такой системы. Поскольку для разработчиков система предоставляется в исходном коде, то у него есть все возможности для его изменения. Это может быть вызвано необходимостью добавления новой функциональности. При этом для такой функциональности может быть реализована поддержка со стороны измененной виртуальной машины. В этом случае работа новых механизмов может стать сложной для анализа со стороны. Также легко внести изменения с целью усложнения генератора полиморфного кода и увеличения блоков, из которых строятся полиморфные алгоритмы. Это, например, может быть полезно в том случае, если кем-то, не смотря на все сложности, будет создан универсальный пакет для взлома системы зашиты. Тогда совсем небольшие изменения в коде, могут свести на нет труды взломщика. Стоит отметить, что это является очень простым действием, и потенциально способствует защите, так как делает процесс создания взлома еще более нерациональным.

5) Поскольку программисту отдаются исходные коды система защиты, то он легко может воспользоваться существующей виртуальной машиной и расширить ее для собственных нужд. То же самое касается и генератора полиморфных алгоритмов. Например, он может встроить в полиморфный код ряд специфической для его системы функций. Сейчас имеется возможность ограничить возможность использования алгоритмов по времени. А где-то, возможно, понадобится ограничение по количеству запусков. Можно расширить только виртуальную машину с целью выполнения в ней критических действий. Например, проверку результатов ответа. Выполнение виртуального кода намного сложнее для анализа, а, следовательно, расширяя механизм виртуальной машины, можно добиться существенного повышения защищенности АСДО.



Информация о работе «Защита информации в системах дистанционного обучения с монопольным доступом»
Раздел: Информатика, программирование
Количество знаков с пробелами: 284992
Количество таблиц: 7
Количество изображений: 0

Похожие работы

Скачать
40302
0
0

... техники (высокая тактовая частота) применение программных методов также достаточно эффективно и очень часто применяется в средствах вычислительной техники наряду с другими программными средствами защиты информации. Применение криптографических методов в рамках сетевых протоколов позволяет также решать отдельные задачи других направлений обеспечения безопасности. При этом, эти средства могут не ...

Скачать
568458
20
78

... для реализации системы бюджетирования Консультационной группы "Воронов и Максимов". Статья о проблемах выбора системы бюджетирования - в проекте "УПРАВЛЕНИЕ 3000". Бюджетный автомат Если вы решитесь на автоматизацию системы бюджетирования компании, перед вами сразу встанут вопросы: что выбрать, сколько платить, как внедрять. Примеряйте! О ЧЕМ РЕЧЬ В “Капитале” на стр. 44, 45 мы рассказали ...

Скачать
26363
0
0

... проблема, как признание отечественных дипломов за границей, возможность трудоустройства и дальнейшего обучения выпускников ВУЗов в других странах. Таким образом, исследование основных направлений в тенденциях развития высшего образования в Украине и ориентация его на зарубежный опыт является достаточно актуальной темой в сфере развития образовательного процесса в нашей стране. 1. Особенности ...

Скачать
61070
3
3

... отношения к ситуации в образовательном процессе. Именно с этой целью в школе было решено ввести так называемое профильное обучение в старших классах, предусматривающей организацию профильного и предпрофильного обучения по социально-гуманитарному, физико-математическому и общеобразовательному направлениям. Последний призван обеспечить более глубокую универсальную подготовку тем старшеклассникам, ...

0 комментариев


Наверх