Северо-Кавказский государственный технологический университет

факультет электронной техники

кафедра промышленной электроники

Реферат

на тему:

Нечетко-логические модели и алгоритмы

Составил: Бекузаров И.

Проверил: проф. Дедегкаев А.Г.

Владикавказ

2001

Содержание

Введение . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1. Общие положения. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1. Постановка задачи. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.2. Fuzzy thinking. Системы, основанные на принципах. . . . . . . . . . . . . . . . . . . . . . . . 10
2. Базовые понятия нечеткой логики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3. Общая структура устройств нечеткого логики . . . . . . . . . . . . . . . . . . . . . . 21
3.1. Микроконтроллер нечеткой логики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2. Процессор нечеткой логики . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

«Если в руках вдумчивого человека есть лишь молоток, то весь мир представляется ему состоящим из гвоздей...»

Лофти Заде, создатель теории нечетких множеств

Введение

Для описания неопределенностей в задачах автоматического управления используются три метода:

·     вероятностный ( стохастический );

·     использование нечеткой логики (fuzzy logic );

·     хаотические системы.

Более подробно остановимся на втором пункте.

Впервые термин нечеткая логика (fuzzy logic) был введен амерканским профессором не то иранского, не то азербайджанского происхождения (в разных источниках указывается по-разному) Лотфи Заде в 1965 году в работе “Нечеткие множества” в журнале “Информатика и управление”.

Основанием для создания новой теории послужил спор профессора со своим другом о том, чья из жен привлекательнее. К единому мнению они, естественно, :) так и не пришли. Это вынудило Заде сформировать концепцию, которая выражает нечеткие понятия типа “привлекательность” в числовой форме.

Очевидной областью внедрения алгоритмов нечеткой логики являются всевозможные экспертные системы, в том числе:

·     нелинейный контроль за процессами ( производство );

·     самообучающиеся системы ( или классификаторы ), исследование рисковых и критических ситуаций ;

·     распознавание образов;

·     финансовый анализ ( рынки ценных бумаг ) ;

·     исследование данных ( корпоративные хранилища );

·     совершенствование стратегий управления и координации действий, например сложное промышленное производство.

В Японии это направление переживает настоящий бум. Здесь функционирует специально созданная лаборатория Laboratory for International Fuzzy Engineering Research (LIFE). Программой этой организации является создание более близких человеку вычислительных устройств.LIFE объединяет 48 компаний в числе которых находятся: Hitachi, Mitsubishi, NEC, Sharp, Sony, Honda, Mazda, Toyota. Из зарубежных ( не Японских ) участниковLIFEможно выделить: IBM, Fuji Xerox, а также к деятельности LIFE проявляет интерес NASA.

Мощь и интуитивная простота нечеткой логики как методологии разрешения проблем гарантирует ее успешное использование во встроенных системах контроля и анализа информации. При этом происходит подключение человеческой интуиции и опыта оператора.

В отличие от традиционной математики, требующей на каждом шаге моделирования точных и однозначных формулировок закономерностей, нечеткая логика предлагает совершенно иной уровень мышления, благодаря которому творческий процесс моделирования происходит на наивысшем уровне абстракции, при котором постулируется лишь минимальный набор закономерностей.

Нечеткие числа, получаемые в результате “не вполне точных измерений”, во многом аналогичны распределениям теории вероятностей, но свободны от присущих последним недостатков: малое количество пригодных к анализу функций распределения, необходимость их принудительной нормализации, соблюдение требований аддитивности, трудность обоснования адекватности математической абстракции для описания поведения фактических величин. В пределе, при возрастании точности, нечеткая логика приходит к стандартной, Булевой. По сравнению с вероятностным методом, нечеткий метод позволяет резко сократить объем производимых вычислений, что, в свою очередь, приводит к увеличению быстродействия нечетких систем.

Недостатками нечетких систем являются:

·     отсутствие стандартной методики конструирования нечетких систем;

·     невозможность математического анализа нечетких систем существующими методами;

·     применение нечеткого подхода по сравнению с вероятностным не приводит к повышению точности вычислений.



Информация о работе «Нечетко-логические модели и алгоритмы»
Раздел: Математика
Количество знаков с пробелами: 26207
Количество таблиц: 1
Количество изображений: 11

Похожие работы

Скачать
10541
0
0

... непосредственный и как результат обработки четких данных. В основе обоих способов лежит необходимость субъективной оценки функций принадлежности нечетких множеств. Рассмотрим модель классификации на основе которой строится система принятия решений [3]. Модель описывает разбиение многомерного пространства признаков факторов, наиболее существенно влияющих на выбор управляющих решений, на нечеткие ...

Скачать
65822
58
13

... выходных лингвистических переменных. С помощью правил преобразования дизъюнктивной и конъюнктивной формы описание системы можно привести к виду: L1 : если <A1 > то <B1 >, L2 : если <A2 > то <B2 >, .................... Lk : если <Ak > то <Bk >, где A1,A2,..,Ak - нечеткие множества, заданные на декартовом произведении X универсальных множеств входных ...

Скачать
22596
2
8

... значение определяется как проекция центра тяжести фигуры, ограниченной функциями принадлежности выходной переменной с допустимыми значениями. Работу правила можно видеть на рис. 6. Основные шаги разработки нечеткой системы управления с использованием CAD-системы fuzzy TECH 3.0 Процесс разработки проекта нечеткой системы управления на fuzzy TECH разбивается, как уже говорилось, на четыре ...

Скачать
53143
0
0

... в популяциях, которые являются существенными для развития. Точный ответ на вопрос: какие биологические процессы существенны для развития, и какие нет? - все еще открыт для исследователей. Реализация генетических алгоритмов В природе особи в популяции конкурируют друг с другом за различные ресурсы, такие, например, как пища или вода. Кроме того, члены популяции одного вида часто конкурируют ...

0 комментариев


Наверх