1. Дополнительное построение

Продли медиану

Характеристика метода. Довольно часто, когда в условии задачи фигурирует медиана треугольника, бывает полезным продлить ее за точку, лежащую на стороне треугольника, на отрезок, равный самой медиане. Полученная новая точка соединяется с вершиной (вершинами) исходного треугольника, в результате чего образуются равные треугольники. Равенство соответствующих элементов этих треугольников помогает найти неизвестную величину или доказать предложенное утверждение.


Задача. Докажите, что треугольник является равнобедренным, если совпадают проведенные из одной и той же вершины медиана и биссектриса.

Решение. Рассмотрим треугольник ABC (рис. 1). Пусть отрезок BM – его медиана и биссектриса. Продлим BM на отрезок MD = BM. Образовались равные треугольники AMB и MCD (1-й признак равенства треугольников).

Из равенства этих треугольников имеем:

(1) AB = CD и (2)  1 =  3.

И
спользуя равенство (2) и то, что  1 =  2 (по условию), получим, что треугольник BCD равнобедренный, а, следовательно, BC = CD. Используя полученный вывод и равенство (1) доказываем, что AB = BC, откуда следует истинность утверждения задачи.


2. Принцип непрерывности


Характеристика метода. Пусть величина k (угол, длина, площадь) зависит от положения точки X на отрезке (ломаной или другой линии). Если при одном положении X на отрезке k < 0, а при другом положении X на отрезке k > 0, то найдется такое положение X на этом отрезке, при котором k = 0.

Задача. В равностороннем треугольнике ABC проведена медиана AA1. Есть ли такая точка X на AA1, из которой отрезок BC виден под прямым углом.

Решение. Будем искать такое положение точки X, при котором  BXC = 90°. Начнем мысленно перемещать точку X по отрезку AA1 от A к A1. Обозначим величину угла BXC за . Когда точка X находится достаточно близко от точки A (рис. 2), тогда  мало отличается от 60°, а поэтому < 90°. Когда точка X находится достаточно близко от (рис. 3), тогда .

мало отличается от 180°, а поэтому > 90°. Значит при каком-то положении точки X на AA1 .



= 90°.

3. Метод доказательства «от противного»

Характеристика метода. Имеем для доказательства утверждения вида A B (A – условие, B – заключение). Суть доказательства данным методом состоит в следующем:

1) Предполагаем, что заключение B не выполняется.
2) Путем логических рассуждений приходим к тому, что условие A не выполняется, т. е. получаем противоречие с условием.
3) Дальнейший анализ показывает, что причина полученного противоречия кроется в первоначальном предположении.
4) Делаем вывод, что это предположение неверно и, следовательно, заключение B выполняется (что и требовалось доказать).

Задача. Какое наибольшее число острых углов может быть в выпуклом многоугольнике?

Решение. Легко показать, что три острых угла в многоугольнике может быть (например, в треугольнике). Все попытки построить какой-нибудь выпуклый n-угольник с четырьмя острыми углами оказываются тщетными. Возникает гипотеза: максимальное количество острых углов выпуклого многоугольника – три. Докажем ее.

1) Пусть найдется выпуклый многоугольник с большим числом углов, например, с четырьмя.
2) В этом случае сумма четырех острых углов будет меньше, чем 90°•4 или 180°•2. Сумма же остальных n – 4 углов будет меньше, чем 180°•(n – 4). Тогда сумма всех углов n-угольника меньше, чем 180°•2 + 180°•(n – 4) = 180°•(n – 2), а это невозможно для выпуклого n-угольника (сумма его углов равна 180°•(n – 2)).
3) Полученное противоречие кроется в исходном предположении.
4) Наше предположение относительно существования четырех (а как показывает анализ рассуждений и большего количества) острых углов неверно. Следовательно, максимальное количество острых углов выпуклого n-угольника – три.

Доказательство выдвинутой гипотезы завершает решение задачи.

4. Метод доказательства «от противного» – 2

Характеристика метода. Имеем для доказательства утверждения вида

A  B (*)

(A – условие, B – заключение). Идея доказательства опирается на равносильность теоремы (*) и теоремы противоположной для обратной к данной, т. е. теоремы

B Ā (**)

Суть доказательства данным методом состоит в следующем:

1) Составляем теорему вида (**).
2) Доказываем составленную теорему.
3) Основываясь на описанной выше равносильности делаем вывод, что теорема (утверждение) (*) верна.

Задача. Какое наибольшее число острых углов может быть в выпуклом многоугольнике?

Решение. Легко показать, что три острых угла в многоугольнике может быть (например, в треугольнике). Все попытки построить какой-нибудь выпуклый n-угольник с четырьмя острыми углами оказываются тщетными. Возникает гипотеза: максимальное количество острых углов выпуклого многоугольника – три. Докажем ее.

1) Составим теорему, противоположную для обратной к данной: если в многоугольнике максимальное число острых углов больше трех, то он не выпуклый.
2) Доказательство: если в многоугольнике острых углов больше трех, то количество тупых углов, смежных к ним (и взятых по одному при вершине) будет так же больше трех. В этом случае сумма всех смежных углов, взятых по одному при вершине, для данного многоугольника будет больше 360°. Известно, что у выпуклого многоугольника данная сумма равна 360°, поэтому данный многоугольник – не выпуклый.
3) Доказав утверждение, сформулированное в пункте 1), мы тем самым доказали и нашу гипотезу.


Информация о работе «Методы и приемы решения задач»
Раздел: Математика
Количество знаков с пробелами: 14262
Количество таблиц: 0
Количество изображений: 23

Похожие работы

Скачать
249522
15
58

... развитие логического мышления учащихся является одной из основных целей курса геометрии. При изучении геометрии развитие логического мышления учащихся осуществляется в процессе формирования понятий, доказательства теорем, решения задач. При изучении геометрических построений, прежде всего, приходится преодолевать трудности логического порядка. В условиях школы для преодоления этих трудностей ...

Скачать
39905
0
1

... , тогда . Если найденные значения  и  подставить в (56), то . Следовательно, минимальное значение функции  равно . Ответ: . 7. Комбинированные методы При решении сложных задач по математике используются самые разнообразные нестандартные методы, большинство из которых трудно поддаются классификации. Как правило, такие методы ориентированы на решение относительно узкого круга задач, однако их ...

Скачать
11634
0
0

... решения физической задачи. Изучение примеров решения задач. Различные приемы и способы решения: алгоритмы, аналогии, геометрические приемы. Метод размерностей, графические решения и т.д. Координатный метод решения задач по механике. Решение задач на основные законы динамики: Ньютона, законы для сил тяготения, упругости, трения, сопротивления. Решение задач на движение материальной точки, системы ...

Скачать
17260
0
10

плана решения задач Существуют 2 вида разбора задач: синтетический (рассуждения надо вести от данных задач к ее вопросу), аналитический (от вопроса задачи - к данным). При аналитическом способе решения задачи выясняется, что нужно предварительно узнать, чтобы ответить на вопрос задачи. Чтобы помочь детям вести рассуждения аналитическим способом, можно использовать прием, называемый “деревом ...

0 комментариев


Наверх