Бэта-функции 6

Бэта – функции определяются интегралом Эйлера первого рода:

= (1.1)

сходятся при .Полагая =1 – t получим:

= - =

т.e. аргумент  и  входят в  симетрично. Принимая во внимание тождество

по формуле интегрирования почестям имеем

Откуда

= (1.2)

7

При целом b = n последовательно применяя(1.2)

Получим

(1.3)

при целых = m,= n,имеем

но B(1,1) = 1,следовательно:

Положим в (1.1)  .Так как график функции симметрична относительно прямой ,то

8

и в результате подстановки ,получаем

полагая в(1.1) ,откуда ,получим

(1.4)

разделяя интеграл на два в пределах от 0 до 1 и от 1 до  и применение ко второму интегралу подстановки ,получим

=

2. Гамма-функция  9

Гамма функцию определяет интеграл Эйлера второго рода

G(a) = (2.1)

сходящийся при  0.Положим =ty,t > 0 ,имеем

G(a) =

и после замены , через  и t через 1+t ,получим

Умножая это равенство и интегрируя по t и пределах от 0 до, имеем:

или на основании (1.4) и после изменения в правой части порядка интегрирования ,получаем:

10

откуда

   (2.2)

заменяя в (2,1) ,на  и интегрируем по частям

получаем рекурентною формулу

 (2.3)

так как

но при целом  имеем

(2.4)

то есть при целых значениях аргумента гамма-функция превращается в факториал.Порядок которого на единицу меньше взятого значения аргумента.При n=1 в (2.4) имеем

3. Производная гамма функции 11

Интеграл

сходится при каждом ,поскольку ,и интеграл  при сходится.

В области , где - произвольное положительное число, этот интеграл сходится равномерно, так как и можна применить признак Веерштраса. Сходящимся при всех значениях  является и весь интеграл  так как и второе слогаемое правой части является интегралом, заведомо сходящимся при любом.Легко видеть что интеграл сходится пов любой области  где  произвольно.Действительно для всех указаных значений и для всех  ,и так как сходится, то выполнены условия признака Веерштрасса. Таким образом , в области интеграл cходится равномерно.

Отсюда вытекает непрерывность гамма функции при.Докажем дифференцируемость этой функции при .Заметим что функция непрерывна при  и, и покажем ,что интеграл :

12

сходится равномерно на каждом сегменте  ,  . Выберем число так , чтобы ; тогда  при .Поэтому существует число  такое , что  и  на.Но тогда на  справедливо неравенство

 

и так как интеграл  сходится, то интеграл  сходится равномерно относительно  на . Аналогично для  существует такое число , что для всех  выполняется неравенство . При таких  и всех  получим , откуда в силу признака сравнения следует , что интеграл  сходится равномерно относительно  на . Наконец , интеграл

в котором подынтегральная функция непрерывна в области

, очевидно, сходится равномерно относительно на . Таким образом , на  интеграл

13

сходится равномерно , а, следовательно , гаммма функция бесконечно дифференцируема при любом  и справедливо равенство

.

Относительно интеграла можна повторить теже рассуждения и заключить, что

По индукции доказывается , что Г-функция бесконечно дифференцируема прии для ее я -ой производной справедливо равенство

Изучим теперь поведение - функции и построим єскиз ее графика .

Из выражения для второй производной -функции видно, что  для всех . Следовательно,  возрастает. Поскольку , то по теореме Роля на сегменте [1,2]производная  при  и при , т. е. Монотонно убывает на и монотонно возрастает на . Далее , поскольку , то при . При  из формулы следует , что  при .

14

Равенство , справедливое при , можно использовать при распространении - функции на отрицательное значение .

Положим для, что . Правая часть этого равенства определена для  из (-1,0). Получаем, что так продолженная функция  принимает на (-1,0) отрицательные значения и при , а также при функция .

Определив таким образом на , мы можем по той же формуле продолжить ее на интервал (-2,-1). На этом интервале продолжением  окажется функция, принимающая положительные значения и такая, что при  и . Продолжая этот процесс, определим функцию , имеющею разрывы в целочисленных точках (см. рис.1)

Отметим еще раз, что интеграл

определяет Г-функцию только при положительных значениях , продолжение на отрицательные значения осуществлено нами формально с помощью формулы приведения .

15

(рис.1)


Информация о работе «Гамма функции»
Раздел: Математика
Количество знаков с пробелами: 8541
Количество таблиц: 0
Количество изображений: 8

Похожие работы

Скачать
20976
1
9

... функциях это уравнение не решается. Его решение называется гамма-функцией. Гамма-функцию можно записать в виде ряда или в виде интеграла. Для изучения глобальных свойств гамма-функции обычно пользуются интегральным представлением. 2.2       Интегральное представление   Перейдем к решению этого уравнения. Будем искать решение в виде интеграла Лапласа: В этом случае правая часть уравнения ...

Скачать
8922
1
12

... к гамма-функции с положительным целым параметром, гамма-функции с положительным параметром, гамма-функции для множества точек. Созданная функциональная модель реализации основных способов вычисления гамма функции и ее программная реализация могут служить органической частью решения более сложных задач. СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ и литературы 1.            Бронштейн, И.Н. Справочник по ...

Скачать
22856
0
4

... -функция непрерывна. Ввиду произвольности s0 ζ(s) непрерывна на всей области определения. Теперь почленным дифференцированием ряда (1), пока формально, найдём производную дзета-функции Римана: (2). Чтобы оправдать этот результат, достаточно удостовериться в том, что ряд (2) равномерно сходится на промежутке  и воспользоваться теоремой о ...

Скачать
21601
0
4

... що найбільший теоретичний і прикладний інтерес представляє випадок викладений у другому розділі. Розділ 2 Всі результати першого розділу, що стосуються дзета-функції Римана, були отримані в припущенні, що її аргумент s – дійсне число. Однак, найвидатніші дослідження й численні важливі додатки стали можливі лише після включення в область визначення функції комплексних чисел. Уперше розглянув ...

0 комментариев


Наверх