1. Векторы. Действия над векторами.

Вектором наз. упорядоченная совокупность чисел Х={X1,X2,...Xn} вектор дан в n-мерном пространстве. Т(X1,X2,X3). n=1,2,3. Геометрический вектор - направленный отрезок. |AB|=|a| - длинна. 2 вектора наз. коллинеарными, если они лежат на 1 прямой или ||-ных прямых. Векторы наз. компланарными, если они лежат в 1-ой плоскости или в ||-ных плоскостях. 2 вектора равны, когда они коллинеарны, сонаправленны, и имеют одинак-ую длинну.

1.умножение на число: произведение вектора А на число l наз. такой вектор В, который обладает след. св-ми: а) А||В. б) l>0, то А­­В, l1, то Аab=0. Равенство “0” скаляргного произведения необходимое и достаточное условие их перпендикулярности (ортогональности).


6. Векторное произведение 2х векторов.

левая ----- правая

Тройка векторов а,в,с наз. правоориентированной (правой), если с конца 3го вектора с кратчайший поворот от 1го ко 2му вектору мы будем видеть против час. стрелки. Если кратчайший поворот от 1го ко 2му по час. стрелки - левая. Векторным произведением 2х векторов а и в наз. такой вектор с, который удовлетворяет условиям: 1. |c|=|a|*|b|*sinj. 2. c^a и c^b. 3. тройка а,в,с-правая.


7. Смешанное произведение векторов и его свойства.

Смешанным произведением векторов наз. векторно-скалярное произведение, являющееся числом: a*b*c=[a*b]*c=a*[b*c], где

a={ax,ay,az}

b={bx,by,bz}

c={cx,cy,cz}

Св-ва:
1. При перестановке 2х сомножителей:

a*b*c=-b*c*a

2. не меняется при перестановке циклических сомножителей:

a*b*c=c*a*b=b*c*a

3.а)(Геометрич. смысл) необходимым и достаточным условием компланарности 3х векторов явл. равенство a*b*c=0

б)если некомпланарные вектора a,b,c привести к 1 началу, то |a*b*c|=Vпараллепипеда, построенного на этих векторах

если a*b*c>0, то тройка a,b,c - правая

если a*b*ctgj=tg(j2-j1)=

=(tgj2-tgj1)/(1+ tgj1tgj2)=

=(k2-k1)/(1+k1k2).

б) p||q, tgj=0, k1=k2

в)p^q,то


22. Расстояние от точки до прямой на плоскости и до плоскости в пространстве.

1. Ax+By+C=0, M0(x0,y0)

2. Пусть плоскость задана ур-ем Ax+By+Cz+D=0


23. Кривые линии 2-го порядка.

Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где

а) Каноническое ур-е эллипса

- Каноническое ур-е эллипса

Если a=b, то x2+b2=a2 - ур-е окружности.

б) Ур-е гиперболы: x2/a2-y2/b2=1

в) ур-е параболы: y2=2px или y=ax2

г) ур-е сферы: x2+y2+z22 (r2=(x-a)2+(y-b)2+(z-c)2)

д) ур-е эллипса: x2/a2-y2/b2+z2/c2=1


24. Парабола и ее свойства.

Множество точек плоскости, координаты которых по отношению к системе декартовых координат удовлетворяет уравнению y=ax2, где х и у - текущие координаты, а- нек. число, наз. параболой.

Если вершина нах. в О(0,0), то ур-е примет вид

y2=2px-симметрично отн. оси ОХ

х2=2pу-симметрично отн. оси ОУ

Точка F(p/2,0) наз. фокусом параболы, а прямая x=-p/2 - ее директриса.

Любой точке М(х,у), принадлежащей параболе, расстояние до фокуса = r=p/2

Св-ва:

1. парабола предст. собой Ґ точек плоскости, равноотстающих от фокуса и от директрисы y=ax2.


25.Эллипс и его св-ва:

Кривая второго порядка наз. эллипсом если коэффициенты А и L имеют одинаковые знаки

Аx2+Cy2=d

ур.-е

наз. канонич. ур.-ем эллипса, где При а=в представляет собой ур-е окружности х2+y22


Точки F1(-c,0) и F2(c,0) - наз. фокусами эллипса а.

Отношение e=с/а наз. его эксцентриситетом (00 на (а,b), то f'(c)>0 и f(x2)–f(x1)0 {2}.

т.к. неравенства {1} и {2} имеют место, каковы бы ни были х1, x2, где ах10 (0. Взяв0 (0, то и f"(x0+(x– x0))>0 для х, принадлежащих достаточно малой окрестности точки x0, а потому, очевидно, и r1(х)>0 для любого отличного от x0 значения х, принадлежащего к указанной окрестности. Значит, график функции лежит выше касательной и кривая обращена в точке x0 выпуклостью книзу. Аналогично, если f''(x0)2 через производные от x и у по t.


Непрерывность дифференцируемой функции:

Всякая функция, имеющая производ­ную (конечную!) в точке х, непрерывна в этой точке. В самом деле, пусть предел (1) существует в точке х и конечен. Этот факт можно записать следующим образом: y/x=f'(x)+ (x) (2), где (x)0 при х0, т.е. (x) есть бесконечно малая при x0. Из (2) следует: y=f'(х)х+x(x). Переходя в этом равенстве к пределу, когда x0, получим limx0y=0, это показ., что f непрерывна в точке х.


1.Промежутки, окресности.Верхняя и нижняя грань числового множества.Точные грани и их свойства.

Интервалы и отрезки - это конечные числовые промежутки. Промежутки бывают следующих типов:

Интервал : строгое неравенство(ax не из Х

2.Берем С для всякого хc

2.Достаточность.Дано:1,2.Доказать: что М=sup{X}.Док-во.

1.Из 1пункта следует, что М есть верхняя грань{X},(x>M=>х не их Х=> любое х из Х меньше М)

2.Из пункта 2 есть х>с=> с ни есть верхняя грань=> М наименьшая из всех верхних граней.


В2.Абсолютная величина и ее свойства.

Модуль числа x - это найбольшее из {+x и -x}. Так же модулем числа x называется само число x, если x>=0 и –x при x=0 из определения(|x|=max{x, -x})

2)-|x|, существует предел limy0x/y=1/(limy0y/x)=1/f'(x). Этим формула [1] доказана. Примечание: Если f'(x)0 непрерывна на (a,b), то g'(y) непрерывна на (A,B). Это следует из [1], где можно положить x=g(y): g'(y)=1/f'[g(y)] (y(A,B)). Ведь сложная функция f'[g(y)], состоящая из непрерывных функций f' и g, непрерывна.


Производная сложной функции:

Теорема №1: Если функция x=(t) имеет производ­ную в точке t, а функция y=f(x) имеет производную в точке х, то сложная функция у=F(t)=f[(t)] (1) имеет производную (по t) в точке t и справедлива равен­ство F'(t)=f'(x)'(t) (2) или y't=y'xx't (3) Доказательство: Зададим t, ему соответствует значение х=(t). Придадим t приращение t0. это вызовет приращение x=(t+t)– (t). Так как функ­ция y=f(x) имеет производную в точке х, то на осно­вании равенства f'(x)=lim(x0)y/x=lim(x0)f(x+x)–f(x)/x, имеем

y=f'(x)x+(x)x (4), где (x)0 при х0. Будем считать, что (0)=0. Равенство (4) при этом соглашении выполняется, т.к. если подставить в него x=0, то получится 0=0. Разделим теперь равенство (4) на t0: y/t=f'(x)(x/t)+ (x)(x/t) (5). Пусть t0. Тогда, потому что функция x(t)(t) имеет производную в точке t и, =>, непрерывна. Переходим в равенстве (5) к пределу при t0. Тогда x0 и (x)0, поэтому получим y't=f'(x)x'(t)+0x'(t)=f'(x)x'(t)=y'xx't. Теорема доказана.

Формула (1) может быть усложнена. Например, если – z=f(y), y=(x), x=() и все три функции имеют производные в соответствующих точках, то z'=z'yy'xx'


Производная функци:

Производной от функции f в точке х наз. пре­дел отношения её приращения y в этой точке к соответствующему приращению аргумента x, когда послед­нее стремится к нулю. Производную принято обозначать так:

f'(x)=lim(x0)y/x=lim(x0)f(x+x)–f(x)/x (1)

Но широко употребляются и другие обозначения: у', df(x)/dx, dy/dx. При фиксированном x величина y/x есть функция x: (x)=y/x (x0). Для существования производной от f в точке х необходимо, чтобы функция f была определена в некоторой окрестности точки x, в том числе в самой точке x. Тогда функция (x) определена для достаточно малых не рав­ных нулю x, т.е. для x, удовлетворяющих неравен­ствам 00 найдётся такой номер N(E), что как только n>N(E) то имеет место неравенство | Xn – A | < E

lim Xn = A

n→∞

Число А есть предел последовательности Xn если для любого ε > 0 найдётся такой номер N, начиная с которого (при n>N) все члены последовательности будут заключены в ε-окрестности какой бы она узкой ни была. Вне этой окрестности может быть лишь конечное число членов этой последовательности.


Информация о работе «Большая коллекция шпор для МАТАНа (1 семестр 1 курс)»
Раздел: Математика
Количество знаков с пробелами: 21226
Количество таблиц: 2
Количество изображений: 14

0 комментариев


Наверх