Войти на сайт

или
Регистрация

Навигация


ОБЩИЕ СВЕДЕНИЯ. ОПИСАНИЕ МОДУЛЕЙ АНАЛИЗА И ВОЗМОЖНОСТЕЙ СИСТЕМЫ

1.1  . С0SM0S/М

 

COSMOS/М это построенная по модульному принципу автономная сис­тема анализа МКЭ, разрабатываемая корпорацией Structural Research для пер­сональных ЭВМ и рабочих станций. Она включает модули для решения линей­ных и нелинейных, статических и динамических задач анализа механических конструкций, а также полевых задач теплопроводности, механики жидко­сти и электромагнетизма. Имеются также модули для решения ряда специ­альных задач, таких как усталостная прочность при циклических нагрузках и анализ гидравлических сетей. Система непрерывно развивается и совершенст­вуется с использованием самых передовых методов, соответствующих стреми­тельному прогрессу технических средств. Программа COSMOS/M имеет модульную структуру, однако пользователь взаимодействует с ней только через интерфейс программы GEOSTAR. Все внутренние обращения и передачи управления автоматизированы таким образом, чтобы обеспечить пользователю работу в режиме однотипного экрана. Пользователь строит модель, определяет все данные, необходимые для программы анализа, выполняет собственно ана­лиз и оценивает результаты - и все это, не выходя из среды GEOSTAR.

Каждой задаче должно быть дано имя, которое является общим для всех файлов, относящихся к этой задаче. Имя каждого из этих файлов имеет свое расширение, которое определяет тип содержащейся в файле инфор­мации. В настоящем пособии все файлы, относящиеся к одной задаче, называ­ются базой данных задачи. Многие файлы базы данных являются общими для всех типов анализа; некоторые содержат информацию, относящуюся только к одному типу анализа. Одна и та же база данных может быть использована для выполнения различных типов анализа. COSMOS/M создает как двоичные фай­лы, так и файлы в формате ASCII. Двоичные файлы используются самой про­граммой для сохранения и восстановления информации. Файлы ASCII, с другой стороны, используются для хранения информации, которая непосредственно используется пользователем.

1.2.Краткий обзор модулей COSMOS/M

Система COSMOS/M включает пре- и постпроцессоры, различные мо­дули анализа, интерфейсы с CAD-системами, трансляторы и утилиты.

GEOSTAR: пре- и постпроцессор

Модуль GEOSTAR представляет собой работающий в графическом режиме трехмерный интерактивный геометрический моделировщик, позволяю­щий генерировать сетки конечных элементов, а также выполняющий функции пре- и постпроцессора при анализе МКЭ. Геометрические возможности GEOSTAR базируются на методе смешанных граничных представлений (В-гер) и параметрических кубических уравнениях.

Основное назначение GEOSTAR - выполнение функций пре- и пост­процессора для системы анализа МКЭ COSMOS/M. Пользователь может созда­вать модель, вводить всю необходимую для анализа информацию, выполнять собственно анализ, используя расчетные модули COSMOS/М и, наконец, визуально оценивать результаты. Все это доступно непосредственно в среде GEOSTAR в графическом интерактивном режиме под управлением падающего меню.

Разнообразные возможности геометрического моделирования в соче­тании с гибкими средствами генерации конечно-элементных сеток, позволяют легко создавать сложные расчетные модели. Нагрузки, граничные и начальные условия могут быть приложены к соответствующему геометрическому элементу модели в любой заранее определенной системе координат.

Программу GEOSTAR выгодно отличает сочетание мощных воз­можностей, интуитивно понятной структуры и легкости в освоении.

Модели, созданные в других системах геометрического моделиро­вания (CAD), могут быть введены в GEOSTAR с помощью форматов DXF и IGES. Пользователю в процессе работы в CAD-системе необходимо получить файл в одном из этих форматов, а потом воспользоваться одной из команд GEOSTAR для ввода модели. Также легко можно получить описание модели, построенной в GEOSTAR, в выходном файле в формате DXF или IGES для последующего использования в одной из CAD-систем.

STAR: модуль линейного статического анализа

Модуль STAR использует для вычисления деформаций конст­рукций линейную теорию, использующую предположение малости перемеще­ний. Для расчета напряжений STAR вызывает дополнительный модуль STRESS. Ниже приведены основные особенности модулей STAR и STRESS:

·     Расширенная библиотека элементов.

·     Изотропные, ортотропные, анизотропные и композитные свойства материа­лов.

·     Критерий разрушения для композитных материалов.

·     Предписанные начальные смещения узлов с учетом или без учета других нагрузок.

·     Связанные степени свободы.

·     Задание уравнений связи.

·     Тепловые, весовые и центробежные нагрузки. „

·     Балочные нагрузки.

·     Плоскостные эффекты при оценке жесткости.

·     Расчет для составного нагружения за один прогон модуля.

·     Введение в матрицу жесткости дополнительной небольшой упругости для предотвращения ее возможного вырождения.

·     Техника суперэлементов.

·     Взаимодействие жидкости с твердым телом.

·     Элемент "Зазор с трением".

·     Постпроцессорные возможности:

вывод листинга смещений и напряжений; автоматический выбор экстремальных значений смещений и компонент на­пряжений; визуализация деформированного состояния; анимация деформи­рованного состояния; многоцветное представление полей деформации и на­пряжения; представленные полей деформации и напряжения в изолиниях; векторное представление полей деформации и напряжения; вывод в листинг и визуализация сдвиговых и моментных компонент балочных элементов; управляемое пользователем масштабирование; комбинирование смещений и компонент напряжения различных вариантов нагружений.

STRESS: дополнительный модуль вычисления напряжений для задач линейной статики.

Модуль STRESS вычисляет напряжения в элементах и узлах для большинства элементов библиотеки, используя результаты, полученные STAR. Напряжения, вызываемые составными нагрузками, вычисляются за один проход модуля, а комбинирование нагружений возможно на постпроцессорной стадии. Напряжения могут быть получены в любой предварительно определен­ной системе координат. Модуль STRESS поддерживает все возможности STAR

DSTAR: модуль вычисления собственных частот и анализа устойчивости

Модуль DSTAR оценивает собственные частоты и соответствую­щие им формы свободных колебаний конструкции. Он также позволяет найти критические нагрузки и связанные с ними формы потери устойчивости. Да­лее отмечены наиболее важные особенности модуля DSTAR.

·     Наличие нескольких методов отыскания собственных значений итераций в подпространстве (вплоть до 150 значений), Ланцоша (вплоть до 150 значе­ний), Якоби (все собственные значения), обратный степенной (одно собст­венное значение).

·      Вычисление комплексных собственных значений.

·      Вычисление собственных значений в заданной частотной области путем задания частотного сдвига.

·      Использование последовательности Штурма для выделения кратных собст­венных значений.

·      Матрицы сосредоточенных и распределенных масс.

·      Учет влияния плоской нагрузки на жесткость. Возможность добавить малую упругость.

·      Постпроцессорные возможности:

вывод листинга собственных частот и форм; вывод листинга экстремальных значений форм; визуализация форм; анимации форм; управляемое пользователем масштабирование.

HSTAR: модуль решения задач теплопроводности

Модуль HSTAR решает задачи теплопроводности, включающие теп­лообмен за счет проводимости, конвекции и излучения. Далее отмечены наи­более важные особенности модуля HSTAR.

·      Линейная и нелинейная, стационарная и нестационарная теплопроводность.

·      Температурно-зависимые свойства материалов.

·      Источники и стоки тепла, зависящие от времени и температуры.

·      Граничные условия, зависящие от времени и температуры: тепловые потоки; конвекция; излучение.

·      Предписанные температуры, задаваемые как функции времени. (Несколько итерационных вычислительных алгоритмов): метод Ньютона - Рафсона; мо­дифицированный метод Ньютона - Рафсона.

·      Вычисление коэффициентов направленности излучения.

·      Постпроцессорные возможности:

вывод в листинг и визуализация темпера­тур, температурных градиентов и тепловых потоков; вывод экстремальных зна­чений; представление многоцветной областью, в изолиниях и в векторном виде.

 

ASTAR: Модуль динамического анализа

Модуль ASTAR использует результаты, вычисленные модулем DSTAR, и метод разложения по собственным формам для вычисления динамической реакции конструкции. Далее отмечены некоторые важные особен­ности модуля ASTAR.

·      Расширенная библиотека элементов.

·      Возможности анализа:

возбуждение во временной области; возбуждение через основание (включая сейсмические нагрузки); возбуждение в частотной области; ударный спектр; генерация спектра ответа; случайная вибрация; стационарный гармонический анализ; спектральная плотность мощности (случайный отклик).

·      Модели демпфирования: скалярная; амортизационная; с дискретной вязко­стью; с модальной вязкостью; конструкционная.

·      Начальные условия.

·      Функции времени для масштабирования нагрузок.

·      Анализ напряженных состояний.

·      Двух узловые элементы "зазор с трением", работающие на сжатие или рас­тяжение.

·      Постпроцессорные возможности:

вывод в листинг и визуализация реакций (смещения, скорости, ускорения и напряжения); построение графиков функ­ций времени или частоты для реакций отдельных узлов и элементов; вывод в листинг экстремальных значений, визуализация в многоцветных и вектор­ных полях, а также изолиниях, масштабирование под управлением пользо­вателя.

NSTAR: модуль нелинейного анализа конструкции

Модуль NSTAR решает задачи нелинейного статического и динами­ческого анализа конструкций. Далее отмечены некоторые важные особенно­сти модуля NSTAR.

·      Расширенная библиотека элементов.

·      Геометрическая нелинейность:

большие перемещения (общая и модифици­рованная формулировка Лагранжиана); большие деформации (резиноподобные материалы); управляемые зазоры, линии и поверхности контакта.

·      Физическая нелинейность:

нелинейная упругость (билинейная и произволь­ная кривая - напряжение-деформация); гиперэластичность; пластичность; ползучесть; термопластичность; несжимаемость.

·      Вычислительные методы:

методы управления включают: управление нагруз­кой; управление перемещением (определяет движение узла как функцию времени в заданном направлении).

·      Итерационные методы включают:

обычный метод Ньютона - Рафсона (метод касательных); модифицированный метод Ньютона - Рафсона (метод каса­тельных); BFSG-метод (Бройдена-Флетчера-Голдфарба-Шанно) (метод се­кущих), поиск линии для улучшения сходимости; управление числом итера­ций и погрешностью.

·      Нагрузки:

сосредоточенные силы; давление; температуры; центробежные; весовые; консервативные и неконсервативные; временные функции для масштабирования нагрузок.

·      Дополнительные возможности:

нелинейная устойчивость (анализ предель­ной нагрузки); повторный запуск для продолжения вычислений с заданного шага (нагрузки, метод решения и шаг интегрирования могут быть изменены перед каждым повторным запуском); связанные степени свободы.

·      Постпроцессорные возможности:

вывод в листинг перемещений, деформа­ций и напряжений; вывод в листинг экстремальных значений перемещений, деформаций и компонент напряжений; визуализация деформированных форм в заданных точках процесса; анимация деформированных форм; ви­зуализация в многоцветных и векторных полях, а также изолиниях; масшта­бирование под управлением пользователя, построение графиков функций времени для реакций отдельных узлов и элементов.

CSTAR: модуль анализа динамики разрушений

Модуль CSTAR выполняет анализ динамики разрушений в реальном времени, используя точные схемы. Далее отмечены некоторые особенности модуля CSTAR.

·      Элементы: трехмерный стержень (ферма) (TRUSS3D); трехмерная балка (ВЕАМЗD); толстая и тонкая трехузловая оболочка (SНЕLL3 и SНЕLL3Е); четырехузловая оболочка (SHELL4); объемный упругий элемент (SOLID).

·      Двух- и трехмерный нестационарный анализ.

·      Физическая и геометрическая нелинейность.

·      Автоматическое вычисление шага интегрирования по времени исходя из величины критического шага для предупреждения неустойчивости, возмож­ной вследствие слишком большого шага.

·      Простой и эффективный оболочечный элемент (SНЕLL4), требующий мало памяти.

·      Граничные условия: смещения; скорости; ускорения.

·      Нагрузки: сосредоточенные силы; давление; предписанные смещения; временные кривые для масштабирования нагрузок в различных местах.

·      Постпроцессорные возможности:

вывод в листинг перемещений, деформа­ций и напряжений; вывод в листинг экстремальных значений перемещений, деформаций и компонент напряжений; визуализация деформированных форм в заданных точках процесса; анимация деформированных форм; ви­зуализация в многоцветных и векторных полях, а также изолиниях; масшта­бирование под управлением пользователя; построение графиков функций времени для реакций отдельных узлов и элементов.

FSTAR: модуль анализа усталостной прочности

Модуль FSTAR использует результаты расчета напряжений, полученные другими модулями, для выполнения анализа усталостной прочности. Модуль позволяет оценить усталостную долговечность (коэффициент запаса при уста­лостной эксплуатации) механической конструкции при циклическом нагружении. Далее отмечены некоторые важнейшие особенности модуля FSTAR.

·     Расширенная библиотека элементов.

·     Процедуры анализа:

правило Минера; АSМЕ-нормы для котлов и сосудов давления; упрощенная упругопластическая формулировка, использующая спецификацию АSМЕ.

·     Вычисление коэффициента эксплуатационного запаса в заданных положе­ниях.

·     Автоматическое вычисление коэффициента эксплуатационного запаса во всех узлах.

·     Упрощенный ввод.

Напряжения берутся из результатов линейного, нелинейного и дина­мического анализа, а также могут быть непосредственно введены пользователем. Профили напряжений, основывающихся на результа­тах, полученных из других модулей, могут быть модифицированы пользователем перед выполнением анализа усталостной прочности.

·     Параметры явления усталости и соответствующее число циклов.

·     Постпроцессорные возможности:

вывод в листинг коэффициентов эксплуа­тационного запаса; визуализация распределения коэффициентов запаса при усталостной эксплуатации в виде многоцветных и векторных полей, а также в виде изолиний; масштабирование под управлением пользователя.

FLOWSTAR: модуль анализа потоков жидкости

Модуль FLOWSTAR позволяет решать двух- и трехмерные стацио­нарные и нестационарные задачи течения жидкости, в которых также могут быть учтены и тепловые эффекты. Модуль использует метод штрафных функций для решения уравнений Навье-Стокса и уравнения энергии для профилей скорости, давления и температуры. Анализируются как внешние потоки вокруг тел произ­вольной формы, так и внутренние течения в клапанах и теплообменниках. Далее отмечены некоторые важнейшие особенности модуля FLOWSTAR.

·     Ламинарное течение вязкой несжимаемой жидкости с учетом теплопереноса.

·     Двух- и трехмерные ламинарные течения.

·     Температурно-зависимые свойства жидкости.

·     Стационарные и нестационарные потоки.

·     Ньютоновские и неньютоновские жидкости.

·     Изотермические и неизотермические потоки.

·     Естественная и вынужденная конвекция.

·     Наличие источников тепла.

·     Граничные условия задаются для следующих величин: скорость; кинетиче­ская энергия; коэффициент диссипации энергии; узловое расстояние от же­сткой стенки; плотность; энергия; нулевая нормальная скорость для гранич­ных элементов; температура; давление; тепловые потоки: конвекция.

·     Постпроцессорные возможности:

вывод в листинг и визуализация скоро­стей, давлений, температур, сдвиговых напряжений, функции тока, темпе­ратурных градиентов, турбулентной кинетической энергии и коэффициен­тов диссипации энергии; вывод в листинг экстремальных значений всех вышеперечисленных величин; визуализация в виде многоцветных и век­торных полей, а также в виде изолиний; масштабирование под управлени­ем пользователя.

ESTAR: модуль электромагнитного анализа

Модуль ESTAR позволяет решать задачи электромагнетизма. Далее отмечены некоторые важнейшие особенности модуля ESTAR.

·     Типы анализа:

двумерный, осесимметричный и общий трехмерный магнито-статический анализ с источниками тока и постоянными магнитами; двух- и трехмерный электростатический анализ; двумерный и осесимметричный не­стационарный электромагнитный анализ; нелинейный анализ, определяе­мый кривыми намагничивания (В-Н) и/или кривыми размагничивания магни­тов; анализ течения тока в проводниках для вычисления распределения тока и потерь.

·     Итерационные методы решения нелинейных задач: обычный метод Ньютона-Рафсона; модифицированный метод Ныотона-Рафсона.

·     Граничные условия:

узловые токи; плотность тока на элементе; напряжение и магнитный потенциал; магнитная связь; периодические граничные усло­вия.

·     Постпроцессорные возможности:

вывод в листинг и визуализация плотности магнитных потоков, интенсивности магнитного поля, магнитных потенциа­лов, напряжений, плотности электрического поля и плотности электрическо­го тока; вывод в листинг экстремальных значений всех вышеперечисленных величин; визуализация в виде многоцветных и векторных полей, а также в виде изолиний; масштабирование под управлением пользователя, сохране­ние электрической энергии для электростатического анализа; магнитная энергия для магнитостатического анализа; крутящий момент для магнитостатического анализа с использованием принципа виртуальной работы.

·     Другие свойства:

электротермическая связь для анализа течения тока и за­дач магнитодинамики; анализ краевых токов; магнитомеханическая связь, когда результирующие магнитные силы могут быть включены в задачи ме­ханического анализа.

MODSTAR, PLOTSTAR и GRAPHSTAR

MODSTAR это ранний вариант препроцессора, работающий в текстовом режиме и использующийся для генерации модели и запуска на выполнение различных расчетных модулей. Для реализации графических возможностей при этом используются модули PLOTSTAR и GRAPHSTAR. Эти модули могут быть выполнены непосредственно из среды GEOSTAR.

OPTSTAR: модуль оптимизации конструкции

Модуль OPTSTAR это конечно-элементная программа численной опти­мизации конструкций. Задача оптимизации базируется на использовании веса конструкции или ее механических характеристик в качестве целевой функции, площади поперечного сечения или толщины как конструкторских переменных и, наконец, веса конструкции или ее механических характеристик как ограниче­ний. Численная программа оптимизации с возможностями анализа чувстви­тельности выполняется в соответствии со следующими положениями.

·     Возможные целевые функции:

вес модели; перемещения узлов в заданных направлениях; компоненты напряжений на элементе; относительные пере­мещения между двумя узлами.

·     Конструкторские переменные:

площадь поперечного сечения стержня (фермы); ширина и высота балки; толщина плосконапряженной пластины; толщина оболочечного элемента.

·     Конструкторские ограничения:

компоненты перемещения в узле; относитель­ные перемещения между двумя узлами; компоненты напряжений на элемен­те; верхний предел для веса модели; пределы на конструкторские переменные.

·     Другие возможности:

нагрузки в виде сосредоточенных сил и давлений; случай многовариантности нагружений; встроенный анализ чувствительно­сти; связывание конструкторских переменных; точная аппроксимация огра­ничений.

COSMOS/M интерфейсы

 

В состав системы включены следующие интерфейсные программы:

COSMOS/M DESIGNER. Автономная интерфейсная программа для системы AutoCAD. Она позволяет вызывать на выполнение вычислительные модули программы COSMOS/M прямо из среды AutoCAD через дополнительное меню. (AutoCAD продукция Autodesk, Inc.)

COSMOS/M ENGINEER. Автономная интерфейсная программа для системы Рго/ENGINEER на рабочих станциях. Модули анализа COSMOS/M могут быть вызваны на выполнение прямо из среды COSMOS/M ENGINEER. (РRО/ ENGINEER продукция Paremetric Technology Corporation)

COSMOS/M трансляторы

В систему COSMOS/M входят следующие программы-трансляторы форматов файлов:

IGES

IGES - транслятор используется для чтения или записи файлов в формате IGES. Этот транслятор может быть вызван на выполнение либо на уровне операцион­ной системы, либо из среды GEOSTAR.

DXF

DXF - транслятор используется для чтения - или записи файлов в формате DXF. Этот транслятор может быть вызван на выполнение либо на уровне операцион­ной системы, либо из среды GEOSTAR.

ANSYS

Двунаправленный интерфейс для передачи данных между системами ANSYS и COSMOS/M.

NASTRAN

Двунаправленный интерфейс для передачи данных между системами NASTRAN и COSMOS/M.

 PATRAN

Двунаправленный интерфейс для передачи данных между системами PATRAN и COSMOS/M.

 SINDA

Двунаправленный интерфейс для передачи данных между программой анализа теплопроводности SINDA'87 и SINDA'85 и системой COSMOS/M.

NODSTAR/GEOSTAR

Входной командный файл для NODSTAR может быть сгенерирован в среде GEOSTAR с помощью команды MODINPUT. Входной командный файл для GEOSTAR может быть сгенерирован в среде MODSTAR с помощью команды MOD2GEO.

Выполнимые файлы, требующиеся для анализа

В дополнение к GEOSTAR (386GEO.ЕХЕ) и нескольким файлам-утилитам для выполнения анализа различного типа используются следующие выполняемые файлы (все с расширением ЕХЕ). Файл 386RENUM.ЕХЕ исполь­зуется для внутренней перенумерации узлов (скрытой от пользователя) для ускорения процесса решения путем минимизации ширины ленты и профиля матрицы жесткости.

Линейная статика 386RENUM, 386PRE1, 386STAR, 386STRES

Собственные

частоты и

устойчивость­

386RENUM, 386PRE1, 386STAR, 386STRES,

386DSTAR

Теплопроводность 386RENUM, 386HSTAR
Нелинейный анализ 386RENUM, 386PRE1, 386NSTAR

Динамический

анализ­

386RENUM, 386PRE1, 386STAR, 386DSTAR, 386ASTAR

Динамика

разруше­ний

386RENUM, 386CSTAR
Усталость

386RENUM, 386PRE1, 386STAR, 386STRES или

386NSTAR

Механика жидкости 386RENUM, 386FLOW
Электромагнетизм 386RENUM, 386ESTAR

Информация о работе «САПР (Cosmos/M)»
Раздел: Кибернетика
Количество знаков с пробелами: 35848
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
73505
5
17

... . Время задержки сигнала при этом увеличивается до 9нс. Наиболее перспективным семейством КМОП микросхем считается семейство SN74AUC с временем задержки сигнала 1,9нс и диапазоном питания 0,8..2,7В. 3. ИНФОРМАЦИОННО-СПРАВОЧНАЯ СИСТЕМА   3.1 Определение и классификация БД   База данных – это информационная модель предметной области, совокупность взаимосвязанных, хранящихся вместе данных при ...

Скачать
65009
8
13

... ей и позволяют в полной мере реализовать поставленную задачу. Заключение В результате данной работы была разработана автоматизированная система квазидинамического расчёта напряженно-деформированного состояния газового стыка дизельного двигателя. Программа работает под управлением операционной системы MS Windows 95/98/NT/2000. Система включает в себя возможность создания твердотельной модели ...

Скачать
60038
1
11

... и сам SolidWorks. Аналогичным образом (то есть без конвертирования данных) может выполняться подготовка управляющих программ для обработки созданных в SolidWorks моделей на оборудовании с ЧПУ. 3. Новые возможности программного комплекса SolidWorks 2010 25 февраля 2010 года в калифорнийском Анахайме прошел 11-й по счету ежегодный международный форум SolidWorks World 2010. Сразу следует ...

Скачать
141647
0
0

... позволяет связывать твёрдотельные модели, сборки или чертежи, созданные с помощью SolidWorks 97, с файлами других приложений, что значительно расширяет возможности автоматизации процесса проектирования. С помощью технологии OLE можно использовать информацию, полученную в других приложениях Windows, для управления моделями и чертежами SolidWorks. Например, размеры модели могут быть рассчитаны в ...

0 комментариев


Наверх