Войти на сайт

или
Регистрация

Навигация

ЦВЕТ, И ЗРЕНИЕ


СОДЕРЖАНИЕ

Введение
1. Свет
2. Органы зрения
2.1. Основные тенденции развития органов зрения в животном мире
2.2. Цветовое зрение
3. Зрительный анализатор человека
3.1. Строение глаза
3.2. Оптическая система
3.3. Адаптация
3.4. Световая и цветовая чувствительность
4. Фотохимическая теория зрения
5. Объяснение цвета тел
Заключение
Список использованной литературы
Приложения

ВВЕДЕНИЕ

Учение о свете и световых явлениях составляет раздел физики, называемый оптикой.

Знание основных оптических законов имеем большое познавательное и практическое значение.

Мы живем в мире разнообразных световых явлений. Многие из ни, например такие, как вечерние зори, когда небо и облака над горизонтом как будто пылают в огне; радуга, простирающаяся от горизонта до горизонта, или полярные сияния, наблюдающиеся в полярных широтах, весьма красочны. Тем, кто не знаком с причинами их возникновения, эти световые явления кажутся необыкновенными и загадочными.

Чтобы выяснить причины тех или иных световых явлений, нужно обнаружить связь наблюдаемого явления с другими явлениями и объяснить его на основании определенного закона природы. Тогда загадочность явления исчезнет, и мы приобретем о нем научное знание.

В повседневной жизни мы встречаемся со многими световыми явлениями, но обычно не задумываемся над ними – настолько они привычны для нас, а вот объяснить их часто затрудняемся. Например,

чайная ложка, опущенная в стакан с водой, кажется нам надломленной или сломанной, в зависимости от того, с какой стороны мы смотрим на ложку.

А вот пример более сложного светового явления. Мы видим окружающие нас предметы многоцветными при освещении солнцем или яркой лампой, но с наступлением сумерек или при ослаблении света цветность предметов блекнет.

На основе законов оптики возникла оптическая и осветительная техника.

Оптическая техника получила свое развитие благодаря изобретению и использованию линз. Линзы составляют главную основу оптических приборов. Каждому теперь известны очки, лупа, микроскоп, бинокль, телескоп и др.

Но самым главным и ценнейшим для нас является живой оптический – наш орган зрения – глаз.

 

1. СВЕТ – ИСТОЧНИК ЗРЕНИЯ

Когда мы при дневном свете смотрим на различные тела, Тела окружающие нас, мы видим их окрашенными в различные цвета. Так трава и листья деревьев – зеленые, цветы – красные или синие или желтые или фиолетовые. Есть также черные, белые, серые тела. Вс6е это не может не вызывать удивление. Казалось бы, все тела освещены одним и тем же светом – светом Солнца. Почему же различны их цвета

Будем исходить из того , что свет – электромагнитная волна, то есть распространяющая переменное электромагнитное поле. В солнечном свете содержаться волны, в которых электрическое и магнитное поля колеблются с различными частотами.

Всякое же вещество состоит из атомов и молекул, содержащих заряженые частицы, которые взаимодействуют друг с другом. Поскольку частицы заряжены под действием электрического поля они могут двигаться, а если поле переменное – то они могут совершать колебания, причем каждая частица в теле имеет определенную собственную частоту колебаний.

Это простая, хотя не слишком точная картина позволит нам понять, что происходит при взаимодействии света с веществом.

Когда на тело падает свет, электрическое поле, ‘принесенное’ им, заставляет заряженные частицы в теле совершать вынужденные колебания (поле световой волны переменное). При этом у некоторых частиц их собственная частота колебаний может совпадать с какой-то частотой колебаний поля световой волны. Тогда, как известно, произойдет явление резонанса – резкого увеличения амплитуды колебаний. При резонансе энергия, принесенная волной, передается атомам тела, что в конечном счете вызывает его нагревание. О свете, частота которого попала в резонанс говорят, что он поглотился теплом.

Но какие то волны из падающего света не попадают в резонанс. Однако они тоже заставляют колебаться с малой амплитудой. Эти частицы сами становятся источником так называемых вторичных электромагнитных волн тлой же частоты. Вторичные волны, складываясь с падающей волной, составляют отраженный или проходящий свет.

Если тело непрозрачное, то поглощение и отражение все, что может произойти с падающим на тело светом: не попавший в резонанс свет отражается, попавший – поглощается. В этом и состоит “секрет” цветности тел. Если например из состава падающего солнечного света в резонанс попали колебания, соответствующий красному цвету, то в отраженном свете их не будет. А наш глаз устроен так, что солнечный свет, лишенный своей красной части, вызывает ощущение зеленого цвета. Окраска непрозрачных тел зависит, таким образом, от того, какие частоты падающего света отсутствуют в свете, отраженным телом.

Существуют тела, в которых заряженные частийы имеют так много различных собственных частот колебаний, что каждая или почти каждая частота в падающем свете попадает в резонанс. Тогда ведь падающий свет поглощается, и отражаться просто нечему. Такие тела называют черными, то есть телами черного цвета.

 


2.ОРГАНЫ ЗРЕНИЯ И ИХ ЭВОЛЮЦИЯ.

2.1Основные тенденции развития органов зрения в животном мире.

Органы многоклеточных животных (кроме губок), обеспечивают восприятие световых раздражений. Основные элементы органов зрения - светочувствительные клетки (фоторецепторы). Простые органы зрения (например, у дождевых червей) состоят из светочувствительных клеток без пигмента, рассеяных среди эпителиальных клеток наружного покрова. Они воспринимают лишь изменения в интенсивности освещения и не реагируют на направление падаюшего света. У пиявок образуются скопления светочувствительных клеток, подостланные или заэкранированные пигментными клетками, которые изолируют светочувствительные клетки от боковых лучей, что позволяет различать не только интенсивность, но и направление падающего света. У некоторых медуз и плоских червей органы зрения - разрозненные светочувствительные клетки, концентрирующиеся в глазные пятна (стигмы). Дальнейшее усложнение органов зрения привело к углублению эпителия глазного пятна в глазной бокал. Если края его смыкаются, органы зрения принимают форму пузырька, заполненного студнеобразным веществом, образующим стекловидное тело. Такое постепенное развитие органов зрения характерно для многощетинковых червей и молюсков. Зрительные клетки таких органов зрения лежат под эпителием и вместе с пигментными клетками образуют сетчатку. У многих членистоногих органы зрения представлены фасеточными глазами. Дальнейшее усовершенствование пузырчатого органа зрения приводит к увеличению числа фоторецепторов, появлению роговицы, радужной оболочки со зрачком хрусталика, особого аккомодационного приспособления и мускулатуры, служащей для движения самого глаза. Органы зрения развиваясь независимо в различных филогенетических ветвях животного мира, на высших ступенях приобретают сходное строение. При этом ведущим фактором эволюции органов зрения по-видимому, была тенденция оптимального сочетания процессов как большего использования энергии светового потока, таки улучшение избирательной чувствительности

Каждое животное видит мир по-своему. Сидя в засаде, лягушка видит только движущиеся предметы: насекомых, на которых они охотятся, или своих врагов. Чтобы увидеть все остальное, она должна сама начать двигаться.

Сумеречные и ночные животные (например, волки и другие хищные звери), как правило, почти не различают цветов.

А вот стрекоза хорошо различает цвета, но только... нижней половиной глаз. Верхняя половина смотрит в небо, на фоне которого добыча и так хорошо заметна.

О хорошем зрении насекомых мы можем судить хотя бы по красоте цветков растений - ведь эта красота предназначена природой именно для насекомых-опылителей. Но мир, какими они его видят, сильно отличается от привычного нам.

Цветки, которые опыляют пчелы, обычно не окрашены в красный цвет: пчела этот цвет воспринимает, как мы - черный. Зато, вероятно, многие невзрачные на наш взгляд цветы приобретают неожиданное великолепие в ультрофиолетовом спектре, в котором видят насекомые. На крыльях некоторых бабочек (например, лимонницы) имеются узоры, скрытые от человеческого глаза и видимые только в ультрофиолетовых лучах.

Удивительным образом используют особенности зрения насекомых некоторые пауки, поджидающие своих жертв внутри цветков. Разумеется, будущая жертва, садясь на цветок, не должна замечать паука, между тем, на брюшках многих таких пауков бросаются в глаза яркие красные пятна. Чем это объяснить? Оказывается, когда на тех же пауков взглянули, так сказать, глазами насекомых, пятна стали совершенно незаметными. Зато птицам, которые могут склевать пауков, отпугивающие пятна заметны превосходно. Значит, паук "загримирован" для насекомых, но "ярко раскрашен" для птиц.

Кстати говоря, насекомые определяют положение солнца, чтобы находить дорогу, даже в пасмурные дни. Ультрафиолетовые лучи свободно проходят сквозь слой облаков. Когда муравьев в ходе опыта стали облучать сильными ультрафиолетовыми лучами, они побежали укрываться "в тень" не под защиту пропускавшей ультрафиолет темной дощечки, а под прозрачное, на наш взгляд, стекло, задерживающее эти лучи.


Информация о работе «Свет»
Раздел: Естествознание
Количество знаков с пробелами: 34378
Количество таблиц: 1
Количество изображений: 0

Похожие работы

Скачать
65919
0
0

... его рисунком, какой можно увидеть чуть ли не в каждом современном учебнике физики. Ясно, что при таком понимании исчезает световой луч древних греков, исчезает и луч света Ньютона. Лейбниц сразу понял значение концепции и писал Гюйгенсу 22 июня 1964 года: «Безусловно, господин Гук никогда бы не пришел к объяснению законов преломления с помощью построенной им картины волновых движений. Вся суть в ...

Скачать
61327
0
0

... , однако, вселяет уже примирение с жизнью, умиротворение и надежду на победоносную правду. Глава 3. Мифологическая символика света В этой главе мы рассмотрим теоретические сведения о мифологических световых символах, обнаруженных в романе Достоевского «Преступление и наказание»; также сюда мы включим сведения о не мифологических символах света и проклассифицируем все световые символы. ...

Скачать
8961
0
0

... света. Последователи Ньютона представили Ньютона как безоговорочного сторонника корпускулярной концепции света. Авторитет имени Ньютона, таким образом, в данном случае сыграл негативную роль - задержал развитие волновой теории света.(2) Сформировавшиеся в предшествующее столетие корпускулярная и волновая концепция света в XIX веке продолжили ожесточенную борьбу. Первая опиралась на авторитет ...

Скачать
47827
0
1

... эта проблема становится все более актуальной в связи с появлением техники, имеющей мощное и концентрированное световое излучение. Для поиска средств, предотвращающих отрицательное действие видимого света на глаз человека, необходимо знать, какие ткани глаза при этом повреждаются, и вскрыть механизмы процессов вызывающих фотоповреждение. Работы последнего времени показали, что фотоповреждение ...

0 комментариев


Наверх