Войти на сайт

или
Регистрация

Навигация


3.   Поясните принцип Ле Шателье. Найдите примеры применения этого принципа вне химии

Поскольку большинство химических реакций не идет до конца, то становится важным понятие равновесия между прямой и обрат­ной реакциями. В какой-то момент их скорости сравняются, и в дан­ной системе при данных условиях установится динамическое равновеcue. Вывести систему из равновесия можно только изменив условия согласно принципу, предложенному в 1884 г. Анри Луи Ле: "Если в системе, находящейся в равновесии, изменить один из факторов равновесия, например, увеличить давление, то произойдет реакция, сопровождающаяся уменьшением объема, и на­оборот. Если же такие реакции происходят без изменения объема, то изменение давления не будет влиять на равновесие".

Сейчас этот принцип формулируют так: внешнее воздействие, которое выводит систему из состояния термодинамического равновесия, вызывает в ней процессы, направленные на ослабление резуль­татов такого влияния или, еще современнее, что система выведенная внешним воздействием из состояния с минимальным производством энтропии, стимулирует развитие процессов, направленных на ослабление внешнего воздействия. Ле Шателье применял этот закон в промыш­ленных условиях для оптимизации синтеза аммиака, производства стекла и цемента, выплавки металлов, получения взрывчатых ве­ществ. Катализаторы, как оказалось, не влияют на положение рав­новесия: они одинаково влияют на прямую и обратную реакции, ускоряют достижение равновесия, но не сдвигают его.

Примером применения этого принципа вне химии может быть следующая ситуация:

Массовое размножение грызунов влечет за собой увеличение численности хищников и паразитов. Они сокращают численность популяции грызунов. Но вслед за этим сокращается численность хищников, так как они начинают погибать от голода. Т. е. Равновесие в экосистеме восстанавливается.

4.   Поясните понятие «фазы» и «фазового перехода». Какие фазовые переходы относят к фазовым переходам первого и второго родов, что лежит в основе такой классификации. Приведите примеры.

фазами называют различные однородные части физико-химичес­ких систем. Однородным является вещество, когда все параметры со­стояния вещества одинаковы во всех его элементарных объемах, раз­меры которых велики по сравнению с межатомными состояниями. Смеси различных газов всегда составляют одну фазу, если во всем объеме они находятся в одинаковых концентрациях. Одно и то же вещество в зависимости от внешних условий может быть в одном из трех агрегатных состояний — жидком, твердом или газообразном. В зависимости от внешних условий система может находиться в рав­новесии либо в одной фазе, либо сразу в нескольких фазах.

Во время фазового перехода температура не меняется, но меняет­ся объем системы. Фазовые переходы бывают нескольких родов. Существуют такие условия давления и температуры, при которых вещество находится в равновесии в разных фазах. Температуры, при которых происходят переходы из одной фазы в другую, называются температурами перехода. Они зависят от дав­ления, хотя и в различной степени: температура плавления — сла­бее, температуры парообразования и сублимации — сильнее.

Изменения агрегатных состояний вещества называются фазовыми переходами 1-го рода, если: 1) температура постоянна во время все­го перехода; 2) меняется объем системы; 3) меняется энтропия системы.

Чтобы произошел такой фазовый переход, нужно данной массе вещества сообщить определенное количество тепла, соответствующе­го скрытой теплоте превращения. В самом деле, при переходе из бо­лее конденсированной фазы в фазу с меньшей плотностью нужно сообщить некоторое количество энергии в форме теплоты, которое пойдет на разрушение кристаллической решетки (при плавлении) или на удаление молекул жидкости друг от. друга (при парообразова­нии). Во время преобразования скрытая теплота пойдет на преодоле­ние сил сцепления, интенсивность теплового движения не изменит­ся, в результате температура остается постоянной. При таком перехо­де степень беспорядка, следовательно, и энтропия, возрастает. Если процесс идет в обратном направления, то скрытая теплота выделяется.

Фазовые переходы 2-го, 3-го и т.д. родов связаны с порядком тех производных термодинамического потенциала дФ, которые ис­пытывают конечные изменения в точке перехода.

Такая классификация фазовых превращений связана с работами физика-теоретика Пауля Эренфеста. Так, в случае фа­зового перехода 2-го рода в точке перехода испытывают скачки про­изводные второго порядка: теплоемкость при постоянном давлении с = -Т(д2Ф/дТ2), сжимаемость b=-(1/V0)( д2Ф/дp2), коэффициент теплового расширения a= (1/V0)( д2Ф/дTp), тогда как первые произ­водные остаются непрерывными. Это означает отсутствие выделения (поглощения) тепла и изменения удельного объема (Ф — термоди­намический потенциал).

В 1937 г. Ландау показал, что фазовые переходы 2-го рода связаны с изменени­ем симметрии системы: выше точки перехода система, как правило, обладает бо­лее высокой симметрией. Например, в магнетике спиновые моменты выше точки ориентированы хаотически, и одновременное вращение всех спинов вокруг одной оси на одинаковый угол не изменяет свойств системы. Ниже точки перехода спи­ны имеют некоторую преимущественную ориентацию, и одновременный их пово­рот меняет направление магнитного момента системы. Ландау ввел коэффициент упорядочения и разложил термодинамический потенциал в точке перехода по сте­пеням этого коэффициента, на основе чего построил классификацию всех возмож­ных типов переходов, а также теорию явлений сверхтекучести и сверхпроводи­мости.

В окружающей нас природе мы особенно часто наблюдаем фазо­вые переходы воды. При переходе воды в пар происходит сначала испарение — переход поверхностного слоя жидкости в пар, при этом в пар переходят только самые быстрые молекулы: они должны пре­одолеть притяжение окружающих молекул, поэтому уменьшаются их средняя кинетическая энергия и, соответственно, температура жид­кости. Наблюдается в быту и обратный процесс — конденсация.

Оба эти процесса зависят от внешних условий. В некоторых случа­ях между ними устанавливается динамическое равновесие, когда чис­ло молекул, покидающих жидкость, становится равным числу моле­кул, возвращающихся в нее. Опыт показывает, что насыщенный пар, или пар, находящийся в динамическом равновесии со своей жидко­стью, не подчиняется закону Бойля — Мариотта, поскольку его дав­ление не зависит от объема. Процессы испарения и конденсации воды обуславливают сложные взаимодействия атмосферы и гидросферы, имеют важное значение в формировании погоды и климата. Между атмосферой и гидросферой происходит непрерывный обмен веще­ством (круговорот воды) и энергией.

Исследования показали, что с поверхности Мирового океана, со­ставляющего 94 % земной гидросферы, за сутки испаряется около 7 000 км3 воды и примерно столько же выпадает в виде осадков. Во­дяной пар, увлекаемый конвекционным движением воздуха, подни­мается вверх и попадает в холодные слои тропосферы. По мере подъе­ма пар становится все более насыщенным, затем конденсируется, об­разуя дождевые и облачные капли. В процессе конденсации пара в тропосфере за сутки выделяется около 1,6-1022 Дж теплоты, что в десятки тысяч раз превосходит вырабатываемую человечеством энер­гию за то же время.

Если процесс перехода жидкости в пар происходит во всем объе­ме, то его называют кипением. Разрыв пузырьков у поверхности ки­пящей жидкости свидетельствует, что давление пара в них превыша­ет давление над поверхностью жидкости.

Поздней осенью, когда после сырой погоды наступает резкое по­холодание, на ветвях деревьев и на проводах можно наблюдать иней — это десублимировавшие кристаллики льда. Подобное явление ис­пользуют при хранении мороженого, когда углекислота охлаждает­ся, так как переходящие в пар молекулы уносят энергию. На Марсе явления сублимации и десублимации углекислоты в его полярных шапках играют такую же роль, что и испарение — конденсация в атмосфере и гидросфере Земли.


Информация о работе «Концепции современного естествознания»
Раздел: Естествознание
Количество знаков с пробелами: 47732
Количество таблиц: 0
Количество изображений: 1

Похожие работы

Скачать
29368
0
0

... сущность теории химической эволюции и биогенеза. Опишите историю открытия и изучения клетки. Зав. кафедрой -------------------------------------------------- Экзаменационный билет по предмету КОНЦЕПЦИИ СОВРЕМЕННОГО ЕСТЕСТВОЗНАНИЯ Билет № 30 Назовите и охарактеризуйте междисциплинарные естественные науки. Сформулируйте третий закон механического движения Ньютона. Каким ...

Скачать
157302
0
0

... вещей (»арден 1987: 53-68, Назаретян 1991: 60, Абдеев 1994: 150- 160). Атрибутивная концепция информации - информация как мера упорядоченности структур и их взаимодействий на всех стадиях организации материи (Абдеев 1994: 162). Одна из самых сложных проблем современного естествознания - функционирование отражения в неживом мире (существует ли в неживом мире опосредующее звено между ...

Скачать
42356
0
0

... , или концепция биогенеза). В XIX веке ее окончательно опроверг Л. Пастер, доказав, что появление жизни там, где она не существовала, связано с бактериями (пастеризация – избавление от бактерий). 3. Концепция современного состояния предполагает, что Земля и жизнь на ней существовали всегда, причем в неизменном виде. 4. Концепция панспермии связывает появление жизни на Земле с ее занесением из ...

Скачать
67452
0
0

... галактик и Вселенной. Материальные системы микро-, макро- и мегамира различаются между собой размерами, характером доминирующих процессов и законами, которым они подчиняются. Важнейшая концепция современного естествознания заключается в материальном единстве всех систем микро-, макро- и мегамира. Можно говорить о единой материальной основе происхождения всех материальных систем на разных стадиях ...

0 комментариев


Наверх