2.1. Разработка структуры ЛВС и определение состава

используемых программно-аппаратных средств.

Локально- вычислительная сеть информационно-расчетного центра филиала ОАО “Ростелеком”- ММТ в новом варианте построения отличается от старого варианта, рисунок 2.1.

Необходимость построения нового варианта локально- вычислительной сети возникла из-за проблем возникших в старой сетевой архитектуре:

пользователям не хватает пропускной способности сети;

малая скорость ответа серверов на запросы;

необходимость перехода на более скоростное чем 10 Мбит/с выделенное соединение, без замены всего оборудования;

обеспечение высокой надежности сети;

удобное управление сетью

Вследствие этих проблем новый вариант построения локально-вычислительной сети информационно-расчетного центра филиала ОАО “Ростелеком”- ММТ представляет из себя:

Переход на более скоростную, чем Ethernet, технологию Fast Ethernet 100 Мбит/с;

Организацию Виртуальных сетей (VLAN), трафик которых на канальном уровне полностью изолирован от других узлов сети;

Осуществление Агрегирования каналов (Транкинга) используя несколько активных параллельных каналов одновременно для повышения пропускной способности и надежности сети.

2.1.1 Переход от Ethernet к Fast Ethernet.

Технология Fast Ethernet является эволюционным развитием классической технологии Ethernet. Ее основными достоинствами являются:

увеличение пропускной способности сегментов сети до 100 Мб/c;

сохранение метода случайного доступа Ethernet;

сохранение звездообразной топологии сетей и поддержка традиционных сред передачи данных - витой пары.

 

Указанные свойства позволяют осуществлять постепенный переход от сетей 10Base-T - наиболее популярного на сегодняшний день варианта Ethernet - к скоростным сетям, сохраняющим значительную преемственность с хорошо знакомой технологией: Fast Ethernet не требует коренного переобучения персонала и замены оборудования во всех узлах сети.

Сегодня все чаще и чаще возникают повышенные требование к пропускной способности каналов между клиентами сети и серверами. Это происходит по разным причинам:

повышение производительности клиентских компьютеров;

увеличение числа пользователей в сети;

появление приложений, работающих с мультимедийной информацией, которая хранится в файлах очень больших размеров;

увеличение числа сервисов, работающих в реальном масштабе времени.

Отличия Fast Ethernet от Ethernet сосредоточены на физическом уровне.

Рис.2.1.1 Отличия стека протоколов 100Base-T от 10Base-T

Структура физического уровня.

Для технологии Fast Ethernet разработаны различные варианты физического уровня, отличающиеся не только типом кабеля и электрическими параметрами импульсов, как это сделано в технологии 10 Мб/с Ethernet, но и способом кодирования сигналов и количеством используемых в кабеле проводников. Поэтому физический уровень Fast Ethernet имеет более сложную структуру, чем классический Ethernet.

Рис 2.1.2 Структура физического уровня Fast Ethernet

Физический уровень состоит из трех подуровней:

1. Уровень согласования (reconciliation sublayer);

2. Независимый от среды интерфейс (Media Independent Interface, MII);

3. Устройство физического уровня (Physical layer device, PHY).

Устройство физического уровня (PHY) обеспечивает кодирование данных, поступающих от MAC-подуровня для передачи их по кабелю определенного типа, синхронизацию передаваемых по кабелю данных, а также прием и декодирование данных в узле-приемнике.

Интерфейс MII поддерживает независимый от используемой физической среды способ обмена данными между MAC-подуровнем и подуровнем PHY.

Этот интерфейс аналогичен по назначению интерфейсу AUI классического Ethernet за исключением того, что интерфейс AUI располагался между подуровнем физического кодирования сигнала (для любых вариантов кабеля использовался одинаковый метод физического кодирования - манчестерский код) и подуровнем физического присоединения к среде, а интерфейс MII располагается между MAC-подуровнем и подуровнями кодирования сигнала, которых в стандарте Fast Ethernet три - FX, TX и T4.

2.1.2 Организация Виртуальных сетей (VLAN)

Виртуальные локальные сети стали сегодня основным механизмом структуризации локальных сетей, построенных на коммутаторах. В коммутируемой структуре без физических границ виртуальные локальные сети позволяют использовать привычные методы построения маршрутизируемых сетей, но на новой, более гибкой программируемой основе.

Коммутаторы (имеются в виду классические коммутаторы второго уровня) могут повысить пропускную способность сети, но не могут создать надежные барьеры на пути ошибочного и нежелательного трафика. Классическим примером такого трафика может служить трафик, создаваемый широковещательными пакетами некорректно работающего узла. Можно привести и другие ситуации, когда трафик нужно отфильтровывать по соображениям защиты данных от несанкционированного доступа.

Коммутаторы внесли в решение проблемы "объединения-разъединения" новый механизм - технологию виртуальных сетей (Virtual LAN,VLAN).

С появлением этой технологии отпала необходимость образовывать изолированные сегменты физическим путем - его заменил программный способ, более гибкий и удобный.

Виртуальной сетъю (VLAN) называется группа узлов сети, трафик которой в том числе и широковещательный, на канальном уровне полностью изолирован от других узлов сети. Это означает, что передача кадров между разными виртуальными сегментами на основании адреса канального уровня невозможна, независимо от типа адреса - уникального, группового или широковещательного. В то же время внутри виртуальной сети кадры передаются по технологии коммутации, то есть только на тот порт, который связан с адресом назначения кадра.

Виртуальные сети - это логическое завершение процесса повышения гибкости механизма сегментации сети, первоначально выполняемого на физически раздельных сегментах. При изменении состава сегментов (переход пользователя в другую сеть, дробление крупных сегментов) при таком подходе приходится производить физическую пере коммутацию разъемов на передних панелях повторителей или в кроссовых панелях.

Поэтому в больших сетях это превращается в постоянную и обременительную работу, которая приводит к многочисленным ошибкам в соединениях.

Промежуточным этапом совершенствования технологии сегментации стали много сегментные повторители. В наиболее совершенных моделях таких повторителей приписывание отдельного порта к любому из внутренних сегментов производится программным путем, обычно с помощью удобного графического интерфейса.

Программное приписывание порта сегменту часто называют статической или конфигурационной коммутацией.

Однако решение задачи изменения состава сегментов с помощью повторителей накладывает некоторые ограничения на структуру сети. Количество сегментов такого повторителя обычно невелико, поэтому выделить каждому узлу свой сегмент, как это можно сделать с помощью коммутатора, нереально. По этой причине сети, построенные на основе повторителей с конфигурационной коммутацией, по-прежнему основаны на разделении среды передачи данных между большим количеством узлов. Следовательно, они обладают гораздо меньшей производительностью по сравнению с сетями, построенными на основе коммутаторов.

При использовании технологии виртуальных сетей в коммутаторах одновременно решаются две задачи:

повышение производительности в каждой из виртуальных сетей, так как в нее не заходит широковещательный трафик других виртуальных сетей;

изоляция сетей друг от друга для управления правами доступа пользователей и создания защитных барьеров на пути нежелательного трафика.

Технология виртуальных сетей признается многими специалистами вторым по важности технологическим новшеством в локальных сетях после появления коммутаторов.

Для связи виртуальных сетей в интерсеть требуется привлечение сетевого уровня. Он может быть реализован в отдельном маршрутизаторе или работать в составе коммутатора, если это коммутатор третьего уровня.

Собственно, виртуальные сети и нужны для того, чтобы создать логическую структуру подсетей, являющуюся основой для работы маршрутизатора.

Технология образования и работы виртуальных сетей с помощью коммутаторов долгое время не была стандартизована, хотя она и реализуется достаточно давно и поддерживается широким спектром моделей коммутаторов разных производителей. Положение изменилось в 1998 году с принятием стандартов IEEE 802.1 p/Q,

однако фирменные версии VLAN еще будут некоторое время существовать в локальных сетях.

Фирменные технологии VLAN одного производителя, как правило, не совместимы с фирменными технологиями других производителей. Поэтому долгое время виртуальные сети создавались на оборудовании одного производителя.

Способы построения виртуальных сетей можно разбить на несколько основных схем:

использование номеров подсетей сетевого уровня;

группировка портов;

группировка МАС-адресов;

группировка протоколов сетевого уровня;

использование номеров VCI/VPI технологии АТМ;

добавление к кадрам канального уровня меток виртуальных сетей.

Все способы, за исключением первого, решают проблему создания виртуальных сетей на канальном уровне и поэтому не зависят от протоколов, работающих в сети на верхних уровнях.

Использование для создания VLAN номеров подсетей сетевого уровня требует, чтобы во всех узлах сети работал какой-либо протокол сетевого уровня, например, IР, IРХ или Арр1е Та1k, причем один и тот же. В этом случае концепция виртуальной сети полностью совпадает с пониманием этого термина на сетевом уровне, то есть виртуальная сеть IР является подсетью IР, а виртуальная сеть IРХ - подсетью IРХ. Такой подход требует и от коммутаторов обязательной поддержки сетевого протокола. Это пока еще не стало повсеместным явлением - "чистые" коммутаторы 2 уровня по-прежнему широко применяются в сетях.

Поэтому при стандартизации техники VLAN разработчики пошли по другому пути. Они разработали механизмы создания VLAN за счет средств только канального уровня.

Группировка портов коммутатора является одним из наиболее простых способов образования виртуальных сетей.

К каждому порту коммутатора приписывается номер виртуальной сети. При о6работке кадров, пришедших в коммутатор, проверяется, принадлежит ли порт назначения той же виртуальной сети, что и порт источника. Если да, то кадр передается (или подвергается дополнительной фильтрации, если коммутатор поддерживает пользовательские фильтры или механизмы профилирования трафика QoS). Этот способ не требует от администратора большой работы, и он также весьма экономичен при реализации в коммутаторах. Группировка портов плохо работает в сетях, построенных на нескольких коммутаторах. Это объясняется тем, что при переходе кадра от одного коммутатора информация о его принадлежности виртуальной сети теряется, если только коммутаторы не связаны между собой столькими портами, сколько всего имеется виртуальных сетей. Поэтому группировка портов применяется в коммутаторах совместно с другими способами поддержания виртуальных сетей, способных передавать информацию о принадлежности кадра определенной VLAN между коммутаторами.

Группировка МАС-адресов свободна от этого недостатка, но обладает другим. Нужно помечать номерами виртуальных сетей все МАС-адреса, имеющиеся в таблицах каждого коммутатора, а это кропотливая работа, сопоставимая с программированием в машинных кодах. Коммутаторы поддерживают этот способ, но он пригоден только для небольших сетей.

Группировка протоколов сетевого уровня не предназначена для последующего объединения виртуальных сетей с помощью маршрутизаторов. Этот способ отделяет трафик одного сетевого протокола от другого для предоставления определенного качества обслуживания или направления пакетов разных протоколов по разным каналам коммутируемой сети. Последние два способа объединяет то, что они используют специальное поле для хранения номера виртуальной сети в самом кадре. Это позволяет сохранять значение метки VLAN при перемещении кадров от одного коммутатора к другому.

Использование номеров VCI/VPI технологии АТМ применяется при передаче кадров локальных сетей через коммутаторы АТМ. При этом номер виртуальной сети отождествляется с номером виртуального пути VPI/VCI, используемого для передачи трафика этой виртуальной локальной сети через сеть АТМ. Этот способ стандартизован в протоколе LANE, разработанном АТМ Forum, и поддерживается всеми производителями коммутаторов АТМ для локальных сетей. Эмулируемые локальные сети ELAN стандарта LANE представляют те же виртуальные сети, изолированные друг от друга для всех видов адресов протоколов канального уровня локальных сетей. Для эффективного объединения ELAN маршрутизаторы могут применять стандарт МРОА, который создан для сквозной маршрутизации трафика ELAN через магистраль АТМ. Для согласованного применения технологии виртуальных сетей в масштабах всей корпоративной локальной сети пограничные коммутаторы между традиционными сегментами и магистралью АТМ должны отображать VLAN, построенные на основе одного из перечисленных способов, на ELAN, и наоборот.

Добавление к кадрам канального уровня меток виртуальных сетей является наиболее универсальным и надежным способом сохранения информации о номере VLAN при передаче кадров между коммутаторами.

В этом способе к обычному кадру локальной сети формата Ethernet, Toking Ring или FDDI добавляется специальное поле для хранения номера виртуальной сети. Однако это требует изменения формата кадра технологии локальной сети, что не всегда удобно.

Производители коммутаторов достаточно давно применяют этот способ, но только на связях между коммутаторами. Поле, переносящее номер виртуальной сети, добавляется к кадру тогда, когда кадр передается от коммутатора к коммутатору, а при передаче кадра конечному узлу оно удаляется. При этом модифицируется протокол взаимодействия "коммутатор-коммутатор", а программное и аппаратное обеспечение конечных узлов остается неизменным.

Примеров фирменных протоколов, использующих метки VLAN в кадрах, много, но общий недостаток у них один - они не поддерживаются другими производителями. Даже у одной компании существовало несколько способов, маркировки кадров, в зависимости от используемой технологии.

Сегодня фирменные способы маркировки VLAN должны постепенно заменяться на стандартный способ, определенный в спецификациях IEEE 802.1 p/Q, которые решают и другие актуальные задачи.

Стандарты IEEE 802.1 p/Q, ставшие частью новой редакции стандарта работы мостов 802.1 D-1998, направлены на поддержку техники VLAN и дифференцированного качества обслуживания в коммутируемых сетях. Эти стандарты основаны на добавлении к стандартному кадру локальной сети двухбайтового поля, несущего метку VLAN и приоритет кадра. Кроме этого, стандарты 802.1 p/Q вводят протокол регистрации параметров конечных узлов в коммутаторах (протокол GARP). Это позволяет не динамически создавать виртуальные сети на основании данных, хранящихся в конфигурационных базах конечных узлов. С помощью протокола GARP можно регистрировать в коммутаторах не только принадлежность к группам виртуальных сетей, но и к другим динамическим группам, в первую очередь, к multicast-группам протокола IP.


Информация о работе «Проектирование локально-вычислительной сети»
Раздел: Информатика, программирование
Количество знаков с пробелами: 141212
Количество таблиц: 28
Количество изображений: 10

Похожие работы

Скачать
72461
12
14

... на основе TCP/IP, информация передается в виде дискретных блоков, называемых IP-пакетами (IP packets) или IP-дейтаграммами (IP datagrams). Благодаря программному обеспечению TCP/IP все компьютеры, подключенные к вычислительной сети, становятся "близкими родственниками". По существу оно скрывает маршрутизаторы и базовую архитектуру сетей и делает так, что все это выглядит как одна большая сеть. ...

Скачать
32151
3
1

... у технологии Fast Ethernet существует обратная совместимость, которая позволяет использовать различные конфигурации Ethernet совместно в одной сети, в ряде случаев даже не изменяя существующую кабельную систему. 2.4   Логическое проектирование ЛВС Чтобы ЛВС управления систем связи и телекоммуникаций выполняла все задачи, целью которых стала создание сети, была выбрана топология «пассивная ...

Скачать
21652
5
6

... волоконно - оптический кабель для внешней прокладки бронир. 4 жил 50/125 многомод. ММ. Способ прокладки подземный. Рассчитаем длину кабеля: L = 95 + 100 + 24 = 219м Комплектация сервера образовательного учреждения. Kraftway Express Lite модель EL21 Конфигурация сервера Сервер построен на основе серверной архитектуры Intel с использованием серверного чипсета Intel 3000 с частотой ...

Скачать
19596
4
1

... Switch’ей выбрано наиболее оптимальным способом, т.е. так, чтобы прокладка проектируемой ЛВС была дешевле.   2.3 Перечень и характеристики оборудования, связанного с прокладкой кабелей СКС, его размещением Структурированная кабельная система (Structured Cabling System, SCS) - это набор коммутационных элементов (кабелей, разъемов, коннекторов, кроссовых панелей и шкафов), а также методика их ...

0 комментариев


Наверх