Войти на сайт

или
Регистрация

Навигация


1. Вступление

Озабоченность глобальными экологическими проблемами (отразившаяся, в частности, в подписании международных Конвенций по климату и биоразнообразию в июне 1992 г.).-примечательная черта нашего времени. Люди все более ощущают себя обитателями одной планеты, обязанными во имя будущего объединить усилия для решения стоящих перед ними насущных проблем. К сожалению, понимание этих проблем неадекватно желанию разрешить их самым простым и быстрым способом - разрыв, который может привести к нежелательным последствиям.

2. Проблема глобальных климатических изменений, сокращение озонового слоя

Проблема глобальных климатических изменений.

Проблема глобальных климатических изменений оказалась в центре внимания в связи с ожидаемым потеплением, вызванным техногенными выбросами парниковых газов.

Парниковый эффект-разогревание нижних слоев атмосферы - возникает в результате поглощения отраженного теплового излучения поверхности Земли молекулами углекислого газа, водяного пара, метана, хлорфторуглеродов и некоторых других газов. Хотя метан дает гораздо больший парниковый эффект, чем углекислый газ, последний более устойчив в атмосфере и выбрасывается в огромных количествах - в объеме около 8-1012 кг ежегодно при сжигании угля, нефти и (в меньшей степени) природного газа. Предполагается, что накопление СО2 в атмосфере приведет к потеплению, которому будут сопутствовать таяние полярных льдов, подъем уровня Мирового океана, затопление густонаселенных приморских низменностей и целых островных государств, опустынивание, сокращение летних осадков на 15- 20% в основных сельскохозяйственных районах от американского среднего запада до Средиземноморья и Западной Австралии.

Такого рода опасения были существенно подкреплены обнародованным в 1990 г. докладом первой рабочей группы Международного пленума по климатическим изменениям, составленным 170 авторитетными специалистами из 25 стран (и еще 200 ученых были привлечены к рецензированию доклада). По их единодушному мнению, парниковый эффект уже дал потепление на 0,3-0,6 (0,5) °С с конца 19 в. Удвоение содержания CO2 в атмосфере произойдет к 2035 г. Соответствующее глобальное потепление составит от 1,5° до 4,5°С, скорее всего около 2,5°С. К этому времени ожидается подъем уровня моря от 8 до 29 см (около 20 см) и до 65 см к 2100 г. На обширных пространствах Евразии и Северной Америки, включая основные житницы, установится летнесухой климат.

Для предотвращения пагубных последствий климатических изменений предполагается снизить выбросы двуокиси углерода, окислов азота и хлорфторуглеродов на 60%, метана на 20%, Эти рекомендации, по-существу, означают крутой поворот в адаптивной стратегии человека. Раньше человек боролся с холодом, теперь начинает бороться с теплом. Раньше он перестраивал свою деятельность, приспосабливаясь к изменениям среды, теперь перестраивает для сохранения статус-кво.

На национальном уровне 15 стран ответственны за 77% выбросов парниковых газов. Среди них на первом месте США (17%) и СНГ (около 13%). Сумарный вклад развивающихся стран - около 46%.

В то же время роль парникового эффекта в климатических процессах последних десятилетий далеко нс бесспорна. Так, 40-е - 60-е годы, первый этап массивных выбросов СО2, ознаменовались заметным похолоданием. Резко возросшие техногенные выбросы 80-х, по сверхточным спутниковым измерениям за десятилетие (1979-1988 гг.) не дали парникового эффекта.

Глобальный климат зависит в первую очередь от общего количества тепла, получаемого атмосферой и его распределения по поверхности планеты. Первое в свою очередь связано со светимостью Солнца, эксцентриситетом земной орбиты, выделением тепла недр, альбедо земной поверхности и атмосферы, парниковым эффектом. Ни один из этих факторов не остается постоянным. На фоне общей тенденции к увеличению светимости Солнца проявляются ротационные и магнитные 22-летние и более продолжительные циклы в 100, 200 и 400 лет. Достоверно установлена связь между пиками солнечной активности (включая последний, 1989 г.) и глобальными потеплениями, тогда как ее минимуму в 1640-1720 гг. соответствует «Малый ледниковый период»-общее похолодание на 1°С.

Альбедо земной поверхности и атмосферы - наиболее мощный регулятор теплового режима, зависит от распределения суши и моря, гор, характера горных пород и растительности, величины полярных ледниковых шапок, вулканической пыли, аэрозолей и облачности (альбедо 0,6-0,9). Поднятие хребтов Альпийско-Гималайского пояса и обширных плато (Тибет, Колорадо) с их вечными снегами, скудной растительностью, известняковыми утесами (альбедо 0,56) в сочетании с регрессией, распространением травянистой растительности (альбедо почти вдвое выше, чем у древесной), могло дать похолодание, достаточное для начала оледенения. В дальнейшем постоянный ледяной покров превращается в доминирующий фактор, усиливаемый оскудением растительности и развитием низкоширотных пустынь.

Пока не ясно, в какой мере облачность может компенсировать другие факторы альбедо, но описанная выше схема в принципе объясняет как направленное изменение, так и колебания температуры земной поверхности.

Вулканизм также может рассматриваться как фактор альбедо, однако его действие оказывается неоднозначным, так как вулканическая пыль уменьшает альбедо ледников, но изменение прозрачности атмосферы стратосферными аэрозолями дает обратный эффект. Поэтому результат зависит от географического положения и характера вулканизма. Один из самых сильных в истории взрыв вулкана Тамбора в Индонезии (фонолитовые игнимбриты) дал температурную аномалию-0,7°С в северном полушарии в 1815-1816 гг. Кракатау (дацитовая лава) вызвал понижение температуры на 0,25-0,4°С в течение двух лет. Сравнительно небольшое извержение вулкана Агунг (андезито-базальтовая лава) сопровождалось в 1963-1964 гг. температурными аномалиями около 0,28°С в тропиках и 1,3°С в высоких широтах, в то время как недавняя активность вулкана Св. Елены (дацитовые игнимбриты), расположенного на 46° с. Ш., не имела глобальных климатических последствий.

Сокращение озонового слоя.

Систематическое слежение за состоянием озонового слоя проводится с 1978 г. с помощью спутниковой аппаратуры. Основные выводы заключаются в том, что за 12 лет наблюдений общие потери стратосферного озона между 65° с. ш. и 65° ю. ш. составили около 3%. В то время как в экваториальной зоне сокращение озонового слоя несущественно, к полюсам оно возрастает, достигая 3°/о в год над Антарктидой.

Наиболее значительное сокращение озонового слоя- до 50% на высоте 20-50 км наблюдается в районе Антарктики в весеннее время. Это явление было описано Дж. Фарманом в 1985 г. и получило широкую известность под названием «озоновой дыры». Наиболее глубокие «дыры» возникли в нечетные годы- 1987 и 1989 гг., однако в 1990 г. весеннее сокращение озонового слоя над Антарктикой также было весьма значительным.

Резкое сокращение озонового слоя в районе Южного полюса происходит в течение трех-четырех недель с сентября по октябрь, в период вихревой циркуляции атмосферы, которая распадается в ноябре, распространяя истощенный озоновый слой к северу. В то же время озон восстанавливается за счет притока из низких широт.

В Арктике события носят менее драматический характер и отчетливо выраженной «озоновой дыры» не возникает, хотя убыль озона в течение зимы достигает 12% на высоте 17-20 км, а может быть и значительно более, поскольку она постоянно компенсируется притоком извне.

Еще в 1974 г. Шервуд Роланд выдвинул гипотезу о разрушении озонового слоя хлорфторуглеродами (ХФУ). Не вызвавшая вначале большого интереса, эта гипотеза оказалась в центре внимания после обнаружения, антарктической «озоновой дыры». ХФУ широко используются как фризы, растворители, стерилизаторы и моющие средства. Они накапливаются в тропосфере и, проникая в стратосферу, подвергаются фотолизу с выделением атомарного хлора, который, наряду с бромом, содержащимся в галонах, и их окисями катализирует реакции разложения озона.

Поскольку соединение окиси хлора (брома) с атомарным кислородом не может дать более чем 3% убыли озона, то основная роль отводится гетерогенным реакциям на частицах льда в полярных стратосферных облаках, которые таким образом выступают в качестве основного фактора разрушения озонового слоя.

Зимне-летнему сокращению озона в Арктике и Антарктике сопутствуют высокие концентрации окиси хлора, что рассматривается как прямое подтверждение участия ХФУ в разрушении озонового слоя.

Данные о последствиях сокращения озонового слоя для человека и биоты весьма противоречивы. Некоторое увеличение заболеваемости раком кожи может быть связано с возросшей солнечной активностью. В отдельные годы наблюдалось также сокращение продуктивности микропланктона в Антарктике. Дозы УФ здесь остаются существенно ниже обычных в низких широтах, но можно предположить, что полярная биота к ним более чувствительна. Требование принять превентивные меры против прогрессирующей утраты стратосферного озона прозвучали на ряде международных встреч и привели к подписанию в 1987 г. Монреальского протокола и осуществлению обширной программы по перестройке соответствующих видов химического производства.

В целом наблюдаемое в настоящее время сокращение озонового слоя, по-видимому, объясняется действием ряда факторов:

1) притоком обедненных озоном приземных воздушных масс к полюсам в связи с интенсивной вихревой циркуляцией атмосферы и тепловыми аномалиями в океане;

2) увеличением солнечной активности с пиком в 1989 г., вторым по интенсивности солнечных вспышек за последние 400 лет;

3) возросшей вулканической активностью-два взрывных извержения в низких широтах за последнее десятилетие (Эль-Чичон, Пинатубо), сопровождавшиеся массовыми выбросами сульфатных аэрозолей в стратосферу;

4) низкой температурой стратосферы, способствующей устойчивому развитию полярных облаков;

5) возросшими антропогенными выбросами окислов азота, двуокиси углерода, метана и ХФУ, накоплением озона в тропосфере (пока не оценена роль авиации, но производство самолетов типа Конкорд, регулярно летающих в стратосфере, внушает обоснованные опасения).

Таким образом, мы не можем рассчитывать на целиком управляемую модель озонового слоя. При этом нам еще предстоит оценить относительный вклад управляемых и неуправляемых факторов.


Информация о работе «Глобальные проблемы человечества в экологии»
Раздел: Экология
Количество знаков с пробелами: 49062
Количество таблиц: 0
Количество изображений: 0

Похожие работы

Скачать
51252
2
1

... это экономическая и географическая науки, медицинские и социологические исследования, физика атмосферы и математика и многие другие науки. Экологические проблемы современности по своим масштабам условно могут быть разделены на локальные, региональные и глобальные и требуют для своего решения неодинаковых средств решения и различных по характеру научных разработок. Пример локальной экологической ...

Скачать
27308
0
0

... уже пошла не о том как «жить», а о том, как «выжить», и это не может не вызвать глубокой озабоченности у всех мыслящих людей. 2. Проблема ценности научно-исследовательского прогресса Идея бесконечного прогресса в развитии цивилизации натолкнулась на реальные трудности существования человека, связанные с исчерпанием ресурсов, влиянием побочных продуктов прогресса на экологию Земли и многое ...

Скачать
47152
0
0

... в их единстве и взаимосвязи позволяют вычленить те проблемы общественного развития, которые являются глобальными, или жизненно важными для всего человечества и каждого отдельного человека. Всем глобальным проблемам общественного развития свойственна мобильность, ибо ни одна из этих проблем не находится в статическом состоянии, каждая из них постоянно изменяется, приобретая разную интенсивность, а ...

Скачать
39700
0
0

... экологическое право. К таким источникам относятся, например, Конвенция о биологическом разнообразии 1992 г., Всемирная Хартия природы 1982 г., Декларация РИО-92 и т.д. 3. Проблемы построения правового государства и соблюдения прав человека Важной глобальной проблемой человечества является соблюдение прав человека. Институт прав и свобод человека и гражданина является центральным в ...

0 комментариев


Наверх