3. Закон равномерной плотности вероятности.

Пример. Погрешность измерения напряжения с помощью вольтметра с дискретной шкалой (±(a – b)/2 – половина деления). МО есть (a + b)/2; дисперсия – (a – b)2/12; среднеквадратическое отклонение (a – b)/(2).

4. Нормальный (Гаусса) закон. Самый распространенный в природе:

.

Центральные моменты: ; ; ;  и т.д. Следовательно, Sk =0; Ex = 0. Для нормального закона при нахождении вероятности попадания случайной точки на заданный участок оси x имеются таблицы так называемого интеграла вероятностей; их несколько для различных выражений, например:  (для m = 0 и s = 1). При определении вероятности попадания на участок от а до b получим . Интерес для практики представляет определение вероятности попадания в интервал, заданный в единицах среднеквадратического отклонения, например, ±3s. Так, например, эта вероятность есть 0,997. Отсюда следует так называемое «правило 3s». Для нормальных СВ это правило позволяет на практике приближенно вычислять s. Например, при определении динамического диапазона магнитофона с помощью осциллографа при отсутствии вольтметра.

Все остальные законы плотности вероятности непрерывных СВ образованы преобразованием равномерного или нормального законов, например:

– закон Симпсона (треугольный). Дисперсия . Свертка двух равномерных законов соответствует плотности вероятности суммы двух независимых равномерно распределенных случайных величин;

– закон Рэлея (корень квадратный из суммы квадратов двух СВ, распределенных по нормальному закону)

.

Распределение модуля комплексной случайной величины при нормальных распределениях действительной и мнимой составляющих подчиняется этому закону (распределение огибающей узкополосного случайного процесса).

Гистограмма. По оси абсцисс откладываются разряды (интервалы шириной l), и на каждом из них как на основании строится прямоугольник, площадь которого равна частоте для данного разряда (оценке вероятности попадания значений в данный разряд – отношение числа попаданий в разряд к общему числу испытаний). Для построения гистограммы нужно частоту для каждого разряда разделить на его длину и полученное число взять в качестве высоты прямоугольника. Очевидно, что площадь всех прямоугольников равна

При увеличении числа измерений N ширину l интервалов можно уменьшать (увеличивать их число m). По мере увеличения N и уменьшения l гистограмма будет приближаться к графику плотности вероятности величины X. То есть гистограмма является «портретом» плотности вероятности. Для получения «хорошего портрета» необходимо при заданном N рационально выбрать число интервалов. При малом числе интервалов плотность вероятности будет описываться слишком грубо, по мере увеличения числа интервалов будет выявляться тонкая структура плотности вероятности. Но при слишком большом числе интервалов «портрет» снова существенно исказится: появятся неравномерности, не закономерные для исследуемой плотности вероятности (в интервалы попадет мало результатов измерений, и элемент случайности приведет к искажениям).

Числовые характеристики распределения. Среднее арифметическое наблюдаемых значений:

.

При увеличении N статистическое среднее стремится к МО. Аналогично оценивается дисперсия – это среднее арифметическое квадрата центрированной СВ, т.е.

, где .

Таким же образом определяются другие статистические характеристики, например: определение плотности вероятности по гистограмме.

Задача эта в значительной мере неопределенная, так как сложно подобрать плотность вероятности, отвечающую модели СВ, т.е. исходя из какого критерия можно гистограмму заменить подходящей плотностью вероятности. Более строго, но со значительными допущениями решается эта проблема с помощью критериев согласия, а сейчас воспользуемся более простыми соображениями: сначала производим анализ вида гистограммы, сравнивая ее с известными законами распределения, а затем, подбирая параметры этого закона, будем добиваться наибольшего визуального сходства сглаженной гистограммы с кривой подобранной плотности вероятности. Например, если график сглаженной гистограммы по виду близок к нормальному закону, то рассчитанные по результатам измерений оценки МО и  можно использовать для построения нормальной плотности вероятности и считать ее соответствующей анализируемой выборке СВ.

теория вероятности теорема дисперсия


Библиографический список

 

1.  Математические основы современной радиоэлектроники [Текст] / И.А. Большаков [и др.]. – М. : Сов. радио, 2009. – 208 с.

2.  Гоноровский, И.С. Радиотехнические цепи и сигналы [Текст] / И.С. Го-норовский. – М. : Радио и связь, 2006. – 608 с.

1.  Манжос, В.Н. Теория и техника обработки радиолокационной информа-ции на фоне помех [Текст] / Я.Д. Ширман, В.Н. Манжос. – М. : Радио и связь, 2011. – 416 с.

2.  Фомичев, К.И. Моноимпульсная радиолокация [Текст] / А.И. Леонов, К.И. Фомичев. – М. : Сов. радио, 2010. – 370 с.

3.  Федосов, В.П. Статистическая радиотехника [Текст] : конспект лекций / В.П. Федосов, В.П. Рыжов. – Таганрог : Изд-во ТРТИ, 2008. – 76 с.


Информация о работе «Случайные величины в статистической радиотехнике»
Раздел: Коммуникации и связь
Количество знаков с пробелами: 20614
Количество таблиц: 1
Количество изображений: 1

Похожие работы

Скачать
15597
0
1

... шум). Известно [2], что в таких условиях при решении задачи обнаружения критерием качества работы устройства может служить отношение сигнал/помеха, которое определяется тремя выражениями: система случайная величина отношение сигнал/помеха по уровню , где As - амплитуда сигнала;  - дисперсия шума; отношение сигнал/помеха по мощности ; энергетическое отношение сигнал/помеха , где  - энергия ...

Скачать
4432
3
0

... с дисперсией. Таблица 3.1 Значения функции корреляции: j 1 2 3 4 5 6 7 8 9 10 R(j) -9.6·10-4 3.53­·10-3 2.7·10-4 4.24·10-3 -1.73·10-3 6.61·10-4 4.11·10-4 6.74·10-5 3.95·10-4 1.12·10-3 Задание 4. Выполнить моделирование случайной величины, распределенной по закону Релея. Объем выборки n = 17, s2 = 27. Решение Ддя ...

Скачать
59435
0
18

... -ным законом распределения ширины щелей и стенок может быть представ-лен следующим выражением:  (2.16). Наибольший интерес для практической реализации в оптических системах КОС для автоматизации контроля статистических характеристик пространственной структуры ЛЗ представляет второе слагаемое выражения (2.16), содержащее функциональную взаимосвязь этих характеристик. Пос-кольку это слагаемое ...

Скачать
211160
1
0

... Глава II. Методики исследования загрязнения окружающей среды и оценки ее качества Для выполнения задач и достижения цели были разработаны нами методики исследования комплексной эколого-геохимической оценки урболандшафтов Волгоградской агломерации, которая заключается в исследовании почв, растительности, оценки выбросов промышленных предприятий и влияния ОС на здоровье человека. 2.1 ...

0 комментариев


Наверх