5. АВТОКОмПЕНСАЦИОННЫЙ ИНТЕРФЕРОМЕТР сДВИГА

В автокомпенсационных интерферометрах свет пересекает исследуемый объект два и более раз. Такие интерферометры лучше приспособлены для исследования слабых оптических неоднородностей.

I. Интерферометр со сферическим зеркалом

Принципы действия автокомпенсационного интерферометра рассмотрим на примере установки со сферическим зеркалом М в качестве главного объектива (рис. 5.1). Призма Волластона W установлена вблизи центра кривизны сферического зеркала.

Световой пучок, идущий от источника S поляризован под углом 45° к оптическим осям  и  призмы. K – конденсор, D – призма полного внутреннего отражения, P1 и P2 – поляроиды. О – проектирующий объектив, Э – экран.

Вычислим начальную разность хода. Рассмотрим общий случай, когда центр кривизны зеркала не расположен в призме ("призма не в центре"). Пусть N – есть точка, в которой ось О пересекает призму. L – длина отрезка СN. Падающий луч в точке A разделяется на два луча 1 и 2. Лучи 1 и 2, образующие между собой угол, падают на зеркало в точках L1 и L2. Затем лучи направляются снова к призме и их мнимые продолжения сходятся в точке A` – изображение точки А по отношению к зеркалу M. На рис. 5.1 L – отрицательная величина. Лучи 1 и 2 пересекают призму второй раз соответственно в точках u1 и u2 и каждый из них отклоняется еще раз на угол q/2. Лучи выходят из призмы слегка расходящимися. В приближении Гаусса можно показать, что мнимые продолжения лучей сходятся на зеркале, в точке L середины L1L2. Лучи 1 и 2 проходят через фокусирующий объектив и сходятся на экране в точке L`, сопряженной с L по отношению к объективу О.

Начальная разность хода D между лучами 1 и 2 после их второго пересечения призмы равна сумме разности db оптических длин в воздухе от точки A до точки L` и разности dn оптических длин в призме. Согласно свойству идеальной оптической системы db=0. Поэтому для получения D достаточно вычислить dn. Пусть u и T есть точки, в которых соответственно прямая LA` и радиус LC пересекает призму. От вершины зеркала направим ось OX перпендикулярно к средней плоскости П призмы. Пусть x– абсцисса плоскости П, x – абсцисса точки L; x(A), x(u) и x(T)= -xx/R - абсциссы точек А, u и T. В соответствии с формулой для разности оптических путей D,

D= q(x-x), (5.1)

Имеем

dm = q[x(A)-x]+ q[x(u)-x].


В приближении Гаусса точка Т находится в середине отрезка Au, следовательно

D = q[x(A)+x(u)-2x] = -2q[x-x(T)] = -2q(x+zx/R). (5.2)

Этот результат не зависит от направления оси Ox. Разность хода в точке L` или в точке L не зависит от положения точки А в призме, т. е. положения светящейся точки источника. С широким источником света имеем, следовательно, полосы, локализованные на зеркале. Так как D зависит лишь от x, то полосы прямолинейны и перпендикулярны Ox.

Когда призма находится не в центре z¹0, то интерферометр настроен на полосы конечной ширины. Когда z=0, разность хода D постоянна по всему полю наблюдения. С немонохроматическим источником за анализатором наблюдается однородный свет. Цвет зависит от положения средней плоскости призмы. Следовательно, когда "призма в центре", интерферометр настроен на бесконечную полосу.

Исследуемый объект помещается перед зеркалом как можно ближе к нему. Основным недостатком интерферометра со сферическим зеркалом является то, что исследуемый объект находится в непараллельном световом пучке. Несовпадение светового пучка с самим собой при падении его на зеркало и после отражения от него может быть устранено использованием полупрозрачного зеркала за счет значительного (примерно в 4 раза) уменьшения освещенности.

Пусть сферическое зеркало интерферометра имеет R=400 см, а расстояние между фокусами светового пучка - 2 см. Если расстояние между зеркалом и объектом составляет 10 см, то расхождение точек встречи луча с объектом составляет 0,05 см. Во многих случаях такое смещение, если его направить в сторону наименьшего изменения толщины неоднородности, не вносит заметной ошибки. В этих условиях ошибка в основном будет вызываться отклонением луча в неоднородности.

Используя линзу и плоское зеркало или вогнутое и плоское зеркало, можно получить такой автокомпенсационный интерферометр, в котором исследуемый объект будет находиться в параллельном пучке. Интерферометр, схема которого приведена на рисунке 1, можно преобразовать так, что световой пучок будет проходить через исследуемый объект 4 раза и, тем самым, чувствительность интерферометра будет повышена еще в два раза.

II. Юстировка и настройка поляризационных интерферометров

Юстировка автокомпенсационных интерферометров осуществляется согласно "правилу равных освещенностей" (см. лабораторную работу №4 "Поляризационный интерферометр сдвига на базе теневого прибора Теплера ИАБ-458" данного описания).



Информация о работе «Оптические методы исследования процессов горения»
Раздел: Физика
Количество знаков с пробелами: 91435
Количество таблиц: 1
Количество изображений: 22

Похожие работы

Скачать
36441
0
7

... датчика и осциллографа. Экспериментальные кривые зависимости времени τ горения частиц от давления p, соответствуют теоретической зависимости. Представляют интерес экспериментальные исследования процесса горения отдельной угольной частицы, движущейся в потоке газа. Такого рода опыты проводили Н. И. Сыромятников и 3.И.Леонтьева. После воспламенения частицы наблюдалось замедление скорости ее ...

Скачать
104614
4
26

... пластмасс различного назначения. Приводимый ниже материал предназначен для студентов химического отделения, специализирующихся по органической химии и химии и физике высокомолекулярных соединений, а также может быть полезен аспирантам, инженерам и научным работникам. 2.1 Метод изучения релаксации напряжения Явление релаксации - это процесс перехода из неравновесного в равновесное состояние ...

Скачать
74295
0
17

... к решению соответствующего интегрального уравнения, при этом могут быть использованы численные методы - аналитические зависимости в этом случае получить не удается. Еще сложнее описать процессы испарения и конденсации частиц, в среде, состоящей из нескольких летучих компонентов [23]. Предполагалось, что процесс стационарный, испаряющиеся компоненты химически инертны, пары представляют собой ...

Скачать
27718
0
9

... для анализа и проверки существующих теорий о процессах, протекающих в пламени, а также для развития и построения новых теорий. Таким образом, целью настоящей работы является изучение существующих методик диагностики пламен и их применения для исследования различных характеристик пламен. Феноменология пламени.   Процесс горения веществ – эта сложная быстропротекающая экзотермическая реакция ...

0 комментариев


Наверх