5. Основы рабочего процесса ГТД

Эффективность ГТД наземного и морского применения, предназначенных для производства мощности на выходном валу, может оцениваться только как эффективность тепловой машины.

При рассмотрении ГТД как тепловой машины можно отвлечься от конкретного типа и назначения двигателя, так как в большинстве рассмотренных выше схем ГТД реализуется одинаковый термодинамический цикл, обычно называемый простым газотурбинным циклом или циклом Брайтона.

Реальный простой газотурбинный цикл показан на рис. 20 в T-S диаграмме. В диаграмме наглядно отображаются работа цикла, подведенное и отведенное тепло и внутрицикловые потери (в процессах сжатия, расширения и течения рабочего тела по тракту ГТД).

Простой цикл состоит из следующих термодинамических процессов (см. рис. 20):

- адиабатическое сжатие рабочего тела (воздуха) в воздухозаборнике (отрезок Н-В на диаграмме) и в компрессоре (отрезок В-К) от атмосферного давления Рн до давления Р*к. В авиационных ГТД при скорости полета равной нулю (V= 0) и в наземных ГТД динамическое сжатие в воздухозаборнике отсутствует и весь процесс сжатия осуществляется в компрессоре;

- подвод тепла при постоянном давлении к потоку рабочего тела в камере сгорания


Рис. 20. Простой газотурбинный цикл в T-S диаграмме:

площадь 2КГ32 — тепло, подведенное топливом (Q1);

площадь 1НС41 - тепло, отведенное в атмосферу (Q2);

площадь 1НК21 — потери работы в процессе сжатия;

площадь ЗГС42 - потери работы в процессе расширения.

Работа цикла = Q1 – Q2 = площадь НКГСН – площадь 1НК21 – площадь ЗГС43

Примечание: при Vn = 0 точки В и Н совпадают.

(КС) за счет сгорания топлива (отрезок К-Г). Фактически давление в КС несколько снижается от Р*к до Р*г из-за гидравлических и тепловых потерь;

- адиабатическое расширение продуктов сгорания в турбине (отрезок Г-Т) и сопле (Т-С) от давления Р* до атмосферного Рн. Для вертолетных и наземных ГТД точки Т и С практически совпадают, так как расширение газа в турбине происходит до атмосферного давления;

- отвод тепла к внешнему источнику (в атмосферу) при постоянном давлении Рн (отрезок С-Н).

Реальный газотурбинный цикл является разомкнутым циклом — в дальнейшем выхлопные газы не участвуют в периодически совершаемой работе и не попадают на вход в двигатель. Цикл осуществляется рабочим телом с переменной теплоемкостью и химическим составом. Является переменными расход рабочего тела из-за добавки массы топлива в камере сгорания во время цикла. Влияние на объем рабочего тела также оказывает система вторичных потоков внутри ГТД. Основными показателями цикла являются удельная работа Lуд (работа, отнесённая к 1 кг рабочего тела) и эффективный КПД ηе, равный отношению работы цикла Lц к количеству теплоты Q1, подведённому с топливом в камере сгорания: ηе = Lц/ Q1. Параметрами реального цикла, определяющими уровень его показателей (Lуд и ηе), являются температура газа перед турбиной (как правило, используется температура перед первым рабочим колесом – Т*СА), суммарная степень сжатия π*Σ, уровень аэродинамического совершенства лопаточных машин и гидравлических потерь по тракту, а также расход циклового воздуха на охлаждение турбины. Важнейшим параметром, определяющим совершенство цикла и ГТД в целом как теплового двигателя, является температура газа перед турбиной. С увеличением температуры пропорционально увеличивается удельная работа цикла, а также повышается эффективный КПД. Зависимость показателей цикла от степени сжатия более сложная: с увеличением π*Σ удельная работа и эффективный КПД цикла сначала увеличиваются, а затем, достигнув максимума при π*Σ = π*Σopt, снижаются. Оптимальная степень сжатия по КПД значительно выше оптимальной степени сжатия по удельной работе: π*Σoptη > π*ΣoptL(рис. 21).

Рис. 21. Зависимость КПД простого цикла и удельной работы цикла от суммарной степени сжатия, температуры газа перед турбиной и КПД узлов


Перечисленные выше особенности газотурбинного цикла определяют пути его совершенствования, постоянно реализуемые на практике. Для повышения удельной работы и эффективного КПД в любом случае целесообразно иметь максимально возможную температуру перед турбиной. Более высокая Т*СА помимо непосредственного повышения Lуд и ηе позволяет применить более высокую степень сжатия, повышающую экономичность цикла.

Для любого типа ГТД повышение температуры перед турбиной означает улучшение удельных параметров двигателя:

- повышение удельной тяги ТРД и ТРДД;

- повышение удельной мощности и экономичности ТВД, вертолетных ГТД, наземных и морских ГТД;

- снижение удельной массы всех типов ГТД;

- повышение лобовой тяги ТРД и ТРДД.

Максимально достижимая температура (стехиометрическая) определяется из условия полного использования в процессе горения кислорода воздуха (коэффициент избытка воздуха в камере сгорания αкс =1). Для углеводородного топлива эта температура зависит от температуры в конце сжатия и составляет Т*САmax = 2200…2800 K.

Фактическая величина применяемых Т*СА в современных ГТД ограничивается, в основном, технологическим возможностями. Это - свойства турбинных материалов, эффективность систем охлаждения, а также экономические и экологические ограничения. Развитие авиационных и наземных ГТД в части повышения Т*СА по годам показано на рис. 22. Наибольшие температуры Т*СА =1850... 1870 К достигнуты на новейших военных ТРДДФ и гражданских ТРДД сверхвысокой тяги (> 40 тс), а также мощных энергетических ГТД (> 150 МВт), в основном применяемых в ПГУ. У ТРДД меньшей размерности для региональных и ближнемагистральных самолетов параметры цикла (Т*СА и π*к) относительно более низкие - для снижения покупной цены двигателя и затрат на техническое обслуживание.

В реализуемых в настоящее время в США и Европе перспективных программах развития авиационных ГТД (IHPTET, UEET, АМЕТ) разрабатываются технологии и испытываются опытные двигатели, обеспечивающие работу с максимальной температурой газа перед турбиной Т*САmax = 2000... 2200 К.

Рис. 22. Эволюция температуры газа перед турбиной.

Активное использование новейших авиационных технологий в проектировании и производстве наземных ГТД, а также реализация сложных систем охлаждения турбины с использованием теплообменников и водяного пара в качестве охладителя позволило наземным ГТД постепенно преодолеть технологическое отставание от авиадвигателей. Новейшие модели мощных энергетических ГТД достигли рабочей температуры газа перед турбиной Т*САmax =1700... 1800 К. При этом ресурс наиболее нагруженных деталей турбины составляет не менее 25000 часов.

Как указывалось, повышение Т*СА позволяет применять более высокие степени сжатия, оптимальные значения которых увеличиваются с ростом Т*СА. В связи с этим, одновременное повышение температуры перед турбиной и степени сжатия является наиболее эффективным способом повышения КПД и удельной работы цикла. Необходимо иметь в виду, что обычно ГТД с более высокими π*Σ имеют и более высокие Т*СА. Степень сжатия компрессора в современных наземных ГТД простого цикла π*к = 30... 35. В авиационных же двигателях π*к = 40...45 и имеет тенденцию к дальнейшему повышению.

Выбор оптимальной степени сжатия ГТД зависит от назначения двигателя, режимов эксплуатации, размерности. Например, высокая степень сжатия приводит к уменьшению размеров проточной части последних ступеней компрессора и первых ступеней турбины. А это неблагоприятно сказывается на КПД этих узлов, и выигрыш КПД цикла от повышения π*Σ может быть сведён на нет уменьшением КПД компрессора и турбины. Поэтому, как правило, более высокие π*Σ применяются в ГТД больших размерностей.

Выбор степени сжатия является одной из задач оптимизации параметров ГТД с целью обеспечения наилучших характеристик двигателя и объекта его применения (летательного аппарата, промышленного оборудования, электростанции и т.д.) при минимальной стоимости жизненного цикла.

Значительным резервом для совершенствования цикла и улучшения параметров ГТД является снижение внутрицикловых потерь - повышение КПД лопаточных машин, снижение потерь и утечек по тракту ГТД и расхода воздуха на охлаждение. В настоящее время благодаря развитию методик трехмерного моделирования процессов в узлах ГТД достигнут значительный прогресс в повышении их характеристик.



Информация о работе «Научно-технический прогресс газотурбинных установок магистральных газопроводов»
Раздел: Физика
Количество знаков с пробелами: 89801
Количество таблиц: 0
Количество изображений: 27

Похожие работы

Скачать
249350
33
10

... (рациональная система нефтепроводов). Это, однако, не означает полного возврата к старой модели управления. 4) Сохранение единого экономического пространства - условия выживания топливно-энергетического комплекса. 5) Найти четкую и продуманную программу инвестиций в нефтяную промышленность. 6) Организовать единый Российский банк нефти и газа, государственная внешнеторговая фирма, включающая ...

Скачать
117873
24
7

... политики в электроэнергетике, совместное участие в развитии новых месторождений и межрегиональных энергетических комплексов, обеспечение политики энергоснабжения, повышение надежности и качества теплоснабжения потребителей, а также снижение затрат на ремонт и перекладку теплосетей. В результате анализа экономической эффективности всех предлагаемых вариантов развития ТЭК НСО предпочтительным ...

Скачать
119035
25
0

... возможного экспорта в восточном направлении. К числу приоритетных направлений энергетической стратегии Сибири необходимо отнести следующие: -     энергосбережение и рациональное природопользование в энергетике; -     структурно-технологическое преобразование ТЭК; -     коренное совершенствование баланса КПТ: использование природного газа, газификация углей, переработка и облагораживание углей ...

Скачать
91991
14
5

... , трансформаторы которой выбираются с учетом взаимного резервирования; ·  Перерыв в электроснабжении возможен лишь на время действия автоматики (АПВ и АВР).  Схема системы электроснабжения нефтеперекачивающей станции, удовлетворяющая требованиям изложенным выше, представлена на листе 2 графической части. 2.2 Схема электроснабжения НПС Рис. 2.1. Схема электроснабжения НПС  На рис. 2.1. в ...

0 комментариев


Наверх